KNN(K Near Neighbor):k个最近的邻居,即每个样本都可以用它最接近的k个邻居来代表。KNN算法属于监督学习方式的分类算法,我的理解就是计算某给点到每个点的距离作为相似度的反馈。
简单来讲,KNN就是“近朱者赤,近墨者黑”的一种分类算法。
KNN是一种基于实例的学习,属于懒惰学习,即没有显式学习过程。
要区分一下聚类(如Kmeans等),KNN是监督学习分类,而Kmeans是无监督学习的聚类,聚类将无标签的数据分成不同的簇。
距离度量
特征连续:距离函数选用曼哈顿距离(L1距离)/欧氏距离(L2距离)
当p=1 的时候,它是曼哈顿距离 当p=2的时候,它是欧式距离 当p不选择的时候,它是切比雪夫 特征离散:汉明距离
举最简单的例子来说明欧式/曼哈顿距离公式是什么样的。
K取值
在scikit-learn重KNN算法的K值是通过n_neighbors参数来调节的,默认值是5。
参考李航博士一书统计学习方法中写道的K值选择:
K值小,相当于用较小的领域中的训练实例进行预测,只要与输入实例相近的实例才会对预测结果,模型变得复杂,只要改变一点点就可能导致分类结果出错,泛化性不佳。(学习近似误差小,但是估计误差增大,过拟合) K值大,相当于用较大的领域中的训练实例进行预测,与输入实例较远的实例也会对预测结果产生影响,模型变得简单,可能预测出错。(学习近似误差大,但是估计误差小,欠拟合) 极端情况:K=0,没有可以类比的邻居;K=N,模型太简单,输出的分类就是所有类中数量最多的,距离都没有产生作用。
什么是近似误差和估计误差:
近似误差:训练集上的误差 估计误差:测试集上的误差
分类规则
knn使用的分类决策规则是多数表决,如果损失函数为0-1损失函数,那么要使误分类率最小即使经验风险最小,多数表决规则实际上就等同于经验风险最小化。
KNN实际应用
案例引入 我们先看一个案例,这样可以更直观的理解KNN算法。数据如下表,其中包括10个人的身高、体重和年龄数据,然后预测第十一个人的体重。
为了更清晰地了解数据间的关系,我们用坐标轴将身高和年龄表示出来,其中横坐标为年龄(age)、纵坐标为身高(Height)。
通过上图可以看到,11点的值是需要求解的,那么怎么求呢?我们可以看到在图中11点更接近于5点和1点,所以其体重应该更接近于5点和1点的值,也就是在72-77之间,这样我们就可以大致得到11点的体重值。下面我们用算法来实现这一过程。 KNN算法工作
如上所述,KNN可以用于分类和回归问题,通过样本间的某些相似特征来进行预测未知元素的值,即“物以类聚”:相同或相似的事物之间具有一些相似的特征。
在分类问题中,我们可以直接将其最近的样本值作为预测结果,那么在回归问题中怎么计算最终的预测结果呢?就像上面的例子,11点取值介于72-77之间,最终结果应该取多少合适呢?一般来说,我们将其平均值作为最终的预测结果。
1、计算待测点到已知点的距离
2、选择距离待测点最近的K个点,k值为人工设置的,至于k值如何设置合适在后边讨论。在这个例子中,我们假设k=3,即点1、5、6被选择。
3、将点1、5、6的值取平均值作为最终的预测结果。即11点的Weight=(77+72+60)/3 = 69.66 kg K值选择
K值代表最近邻的个数,k值的选择对预测结果有较大影响。
在上面的例子中,我们选择k=3时
最终的预测结果为
ID11 = (77+72+60)/3 ID11 = 69.66 kg
当我们选择k=5时
最终的预测结果为
ID 11 = (77+59+72+60+58)/5 ID 11 = 65.2 kg 我们可以看到k值不同结果也将不同,因此我们需要选择一个合适的k值来获得最佳的预测结果。我们的目标就是获得预测值与真实值之间最小的误差。
下面我们看一下k值与误差的关系曲线
由曲线可得,如果K值太小,则会发生过拟合;如果k值太大,则会发生欠拟合。因此我们根据误差曲线选择最佳k值为9,你也可以使用其他方法寻找最佳k值。
python实现代码
1、读取数据
2、处理缺失值
3、处理分类变量并删除ID列
4、划分训练集与测试
5、特征标准化
6、查看误差曲线
输出
由误差曲线可得我们选择k=7可以获得最优结果
预测结果
KNN算法优点,缺点,适用场景
优点
流程简单明了,易于实现 方便进行多分类任务,效果优于SVM 适合对稀有事件进行分类 缺点
计算量大,T = O ( n ) T=O(n)T=O(n),需要计算到每个点的距离 样本不平衡时(一些分类数量少,一些多),前K个样本中大容量类别占据多数,这种情况会影响到分类结果 K太小过拟合,K太大欠拟合,K较难决定得完美,通过交叉验证确定K 适用场景
多分类问题 稀有事件分类问题 文本分类问题 模式识别 聚类分析 样本数量较少的分类问题
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/13009.html