当前位置:网站首页 > 技术博客 > 正文

rrt路径平滑算法



        Rapidly-Exploring Random Trees (RRT) 路径规划算法是一种常用于机器人运动规划的算法,旨在通过随机采样和快速探索环境来生成可行路径。该算法由 Steven M. LaValle 在 1998 年提出,至今仍被广泛应用于各种机器人领域。

        RRT 算法的核心思想是通过随机采样,在自由空间中快速构建一个树形结构,以探索可能的路径。在每次迭代中,算法随机生成一个节点,并试图将该节点连接到最接近的树节点,形成一条边。通过反复迭代这一过程,不断扩展树的范围,直至达到目标状态或达到最大迭代次数为止。

        在初始阶段,将起点Xstart添加到随机树的根节点。然后,在地图空间中随机采样一个坐标点作为随机点Xrand,并找到距离随机点Xrand最近的树节点Xnear。接下来,沿着从Xnear到Xrand的方向扩展一个给定的步长,得到新节点Xnew。

        新节点Xnew的生成分为两种情况:(1)如果Xnear到Xrand的距离大于步长δ,则在Xnear到Xrand的方向上扩展一个步长δ的位置作为Xnew;(2)如果Xnear到Xrand的距离小于等于步长δ,则直接将Xrand作为Xnew的位置。

        然后,检测新节点Xnew是否通过了碰撞检测:如果通过了碰撞检测,则将其添加到随机树的根节点中;如果未通过碰撞检测,则重新迭代以寻找新的节点。

        接着,判断新节点Xnew是否在目标点Xgoal的阈值范围内,若是,则返回根节点,路径规划完成。

获取随机节点的代码为:

 

 获取临近点的代码为:

 

获取新节点的代码为:

 

新节点在目标点范围内,获得路径的代码为:

 

在狭窄环境下,这种算法如果没有足够的迭代次数,就很难找到路径。如上图所示。

而给了它足够的迭代次数后,虽然能找到路径,但是算法所用的迭代次数和运行时间相比于在简单环境下,无疑也是大大增加。 如上图所示。

        从以上两种地图环境可以看出:

        RRT 算法具有几个显著的优点。首先,它适用于高维和复杂环境,能够快速生成可行路径。其次,由于采用了随机采样的策略,因此能够有效应对未知环境和动态障碍物。此外,RRT 算法还能够在运行过程中动态调整树的结构,以适应不同的环境条件。

        然而,RRT 算法也存在一些局限性。由于其随机性质,算法在生成新节点时没有目标引导性,导致算法随机性较强。另外,算法在搜索过程中对空间的搜索范围较大,这样无疑是在浪费运行的计算量和运行时间。还要考虑的是,随机点引导的新节点所生成的路径可能不够优化,导致路径长度较长或存在不必要的曲折。此外,在某些情况下,算法可能会陷入局部最优解,无法找到全局路径,致使算法规划路径成功率较低。

  • 上一篇: uboot bootz
  • 下一篇: 文件上传前端怎么写
  • 版权声明


    相关文章:

  • uboot bootz2024-12-19 11:30:03
  • 十大主流自动化测试工具2024-12-19 11:30:03
  • 彻底关闭137端口2024-12-19 11:30:03
  • c解析json字符串2024-12-19 11:30:03
  • ubuntu自带输入法怎么用2024-12-19 11:30:03
  • 文件上传前端怎么写2024-12-19 11:30:03
  • python中class语句2024-12-19 11:30:03
  • vmware免费版下载2024-12-19 11:30:03
  • android线程间的通讯2024-12-19 11:30:03
  • linux chroot命令2024-12-19 11:30:03