当前位置:网站首页 > 技术博客 > 正文

表面纳米化






Fluorescent carbon nanodots (CNDs) have drawn increasing attention in recent years. These cost-effective and eco-friendly nanomaterials with bright fluorescence have been investigated as promising materials for electrooptic and bioimaging applications. However, the chemical source stimulating their strong fluorescence has not been completely identified to date. Depending on the chemical composition, two absorption peaks are observed in the visible range. In this study, we applied selected chemical modifications to CNDs in order to elucidate the correlation between the chemical structure and optical behavior of CNDs. Varying the amount of acetic acid in the synthesis process resulted in different effects on the absorbance and fluorescence photo-spectra. Specifically, at a low concentration (10%), the fluorescence is dramatically red shifted from 340 to 405 nm. Comprehensive characterization of the chemical modification by FTIR and XPS allows identification of the role of acetic acid in the reaction mechanism leading to the modified photoactivity. The functional group responsible for the 405 nm peak was identified as HPPT. We describe a chemical mechanism involving acetic acid that leads to an increased concentration of HPPT groups on the surface of the CNDs. Applying two additional independent chemical and consequently optical modifications namely solution pH and annealing on the nanodots further supports our proposed explanation. Understanding the molecular origin of CND fluorescence may promote the design and control of effective CND fluorescence in optical applications.

  • 上一篇: 火鸟字幕组的礼包密码
  • 下一篇: flow工具
  • 版权声明


    相关文章:

  • 火鸟字幕组的礼包密码2024-11-19 18:30:01
  • 字典树的实现方式2024-11-19 18:30:01
  • rbf(机器学习--支持向量机(六)径向基核函数(RBF)详解)2024-11-19 18:30:01
  • datetime函数怎么用2024-11-19 18:30:01
  • iconv_open2024-11-19 18:30:01
  • flow工具2024-11-19 18:30:01
  • 逻辑回归模型的公式2024-11-19 18:30:01
  • seq2seq模型存在哪些问题2024-11-19 18:30:01
  • 微信小程序客服怎么设置2024-11-19 18:30:01
  • windows7无法打开exe2024-11-19 18:30:01