作者:姚童,Datawhale优秀学习者
图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。
线性滤波:对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:方框滤波、均值滤波、高斯滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版的系数不同。
非线性滤波:非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器和双边滤波器。
卷积核
数字图像是一个二维的数组,对数字图像做卷积操作其实就是利用卷积核在图像上滑动,将图像点上的像素值与对应的卷积核上的数值相乘,然后将所有相乘后的值相加作为卷积核中间像素点的像素值,并最终滑动完所有图像的过程。
通常,卷积核的宽度和高度一般是奇数,这样才有中心的像素点,所以卷积核一般都是3x3,5x5或者7x7等。n×n的卷积核的半径为(n-1)/2,例如5x5大小的卷积核的半径就是2。
两种常见噪声
函数介绍:python中的skimage图像处理模块,该函数可以方便的为图像添加各种类型的噪声。
参数:
1、椒盐噪声(脉冲噪声)
椒盐噪声也称为脉冲噪声,是图像中常常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。产生具有椒盐噪声的图像:(python)
效果:左边为原图,右边加入了椒盐噪声
2、高斯噪声
高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。
高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。高斯噪声是与光强没有关系的噪声,无论像素值是多少,噪声的平均水平(一般是0)不变。产生具有高斯噪声的图像:(python)
效果:左边为原图,右边加入了高斯噪声
均值滤波、方框滤波
1、方框(盒子)滤波
方框滤波是一种非常有用的线性滤波,也叫盒子滤波。
积分图:图像积分图中每个点的值是原图像中该点左上角的所有像素值之和。建立一个数组作为积分图像,其宽度和高度与原图像相等.,然后对这个数组赋值,每个点存储的是原图像中该点左上角的所有像素值之和。
对一个灰度图而言,事先将其积分图构建好,当需要计算灰度图某个区域内所有像素点的像素值之和的时候,都可以通过查表的方法和有限次简单运算,迅速得到结果。
优势:它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图,但是比积分图更快(与它的实现方式有关)。
方框滤波采用下面的卷积核与图像进行卷积:
应用:
可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。方框滤波还可以用来计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。
2、均值滤波
均值滤波就是方框滤波归一化的特殊情况。使卷积核所有的元素之和等于1。卷积核如下:
α为卷积核中点的个数。
均值滤波是方框滤波的特殊情况,均值滤波方法是:对要处理的像素,选择一个模板,该模板由其邻域内的若干个像素组成,用模板的均值来替代原像素的值。可见,归一化了就是均值滤波;不归一化则是方框滤波。
均值滤波的缺点:
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。
利用均值滤波处理图像:
应用:
均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节。
高斯滤波
在进行均值滤波和方框滤波时。其邻域内每个像素的权重是相等的。在高斯滤波中,会将中心点的权重值加大,原理中心点的权重值减小,在此基础上计算邻域内各个像素值不同权重的和。
在高斯滤波中,核的宽度和高度可以不相同,但是它们都必须是奇数。
在实际应用中,卷积核都会经过归一化,归一化后可以表示为小数形式或分数形式。没有进行归一化的卷积核进行滤波,结果往往是错误的。
高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像的模糊程度较小,更能够保持图像的整体细节。
高斯滤波卷积核:
先介绍一下二维高斯分布:
首先我们要确定卷积核的尺寸ksize,然后设定高斯分布的标准差。生成的过程,首先根据模板的大小,找到模板的中心位置。 然后遍历,将模板中每个坐标带入高斯分布的函数,计算每个位置的系数。
具体过程如下:
不必纠结于系数,因为它只是一个常数,并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们忽略它而只计算后半部分。
根据二维高斯分布公式,其中为卷积核内任一点的坐标,为卷积核中心点的坐标,通常为;σ是标准差。
例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点。模板中各个位置的坐标,如下图所示。
这时,高斯分布的函数可以改为:
然后,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。
通常模板有两种形式:小数形式和整数形式。
不难发现,高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σ。标准差代表着数据的离散程度,如果σ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。
一维高斯分布的概率分布密度图:图中,紫色的σ较小,青色的σ较大。
利用高斯滤波处理图像:
应用: 高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。
中值滤波
中值滤波不再采用加权求和的方式计算滤波结果,它用邻域内所有像素值的中间值来代替当前像素点的像素值。
中值滤波会取当前像素点及其周围临近像素点的像素值,一般有奇数个像素点,将这些像素值排序,将排序后位于中间位置的像素值作为当前像素点的像素值。
中值滤波对于斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise)来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值,而且噪声成分很难被选上,所以可以在几乎不影响原有图像的情况下去除全部噪声。但是由于需要进行排序操作,中值滤波的计算量较大。
中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。
如下图:滤波核大小为3,邻域内的像素值排序后为[56,66,90,91,93,94,95,97,101],中值为93,所以用93替换中心点原来的像素值56。
双边滤波
双边滤波是综合考虑空间信息和色彩信息的滤波方式,在滤波过程中能有效的保护图像内的边缘信息。
双边滤波在计算某一个像素点的像素值时,同时考虑距离信息(距离越远,权重越小)和色彩信息(色彩差别越大,权重越小)。既能去除噪声,又能较好的保护边缘信息。
如下图:左边为原图,中间为均值滤波可能的结果,右边为双边滤波的结果
在双边滤波中,计算左侧白色区域的滤波结果时:
计算右侧黑色区域的滤波结果时:
这样,左侧白色的滤波结果仍是白色,黑色的像素点权重为0,对它不会有影响;右侧黑色的滤波结果仍是黑色,白色的像素点权重为0,对它不会有影响。所以,双边滤波会将边缘信息保留。
边界处理
对于图像的边界点,不存在n×n的邻域区域,例如左上角第一行第一列的像素点,如果以其为中心取3×3的领域,则部分区域位于图像外部,图像外部是没有像素点和像素值的,所以无法计算像素和。在实际处理过程中需要对图像边界进行扩充,如下图。
扩充后的点需要填充像素值,常见的几种方式:
为了更直观的体现填充情况,这里设卷积核为5×5的,填充情况如下:
c++实现
1、方框滤波
参数:
关于是否归一化:
如果没有进行归一化处理,邻域内的像素值和基本都会超过像素的最大值255,最后得到的图像接近纯白色,部分点处有颜色。有颜色的点是因为这些点周围邻域的像素值均较小,相加后仍小于255。如下图:
2、均值滤波
参数:
3、高斯滤波
参数:
4、中值滤波
参数:
5、双边滤波
参数:
c++代码
1、方框滤波、均值滤波、高斯滤波
效果:可以看出,均值滤波与方框滤波归一化后的结果是一样的
2、中值滤波
效果:可以看出,中值滤波消除椒盐噪声的效果比高斯滤波好
3、双边滤波
效果:可以看出,双边滤波后的边缘保留的比高斯滤波好
python实现
1、方框滤波、均值滤波、高斯滤波
效果:
2、中值滤波
效果:左边为原图,右边是中值滤波处理后
下图左边为原图,右边是高斯滤波处理后。可以看出高斯滤波对椒盐噪声的效果不如中值滤波。
3、双边滤波
效果:左边为原图,中间为中值滤波处理,右边为高斯滤波处理。可以看出,经过高斯滤波的边缘被模糊虚化了,经过双边滤波的边缘得到了较好的保留。
版权声明:
本文来源网络,所有图片文章版权属于原作者,如有侵权,联系删除。
本文网址:https://www.mushiming.com/mjsbk/7185.html