\u9009\u9898\u6307\u5bfc, \u9879\u76ee\u5206\u4eab\uff1a<\/strong><\/p>\nhttps:\/\/gitee.com\/yaa-dc\/BJH\/blob\/master\/gg\/cc\/README.md<\/p>\n
1 \u9879\u76ee\u80cc\u666f<\/h2>\n
\u5728\u6211\u56fd\u6709\u7740\u6210\u5343\u4e0a\u4e07\u79cd\u82b1\u5349\uff0c \u4f46\u5982\u4f55\u80fd\u65b9\u4fbf\u5feb\u6377\u7684\u8bc6\u522b\u8fa8\u8bc6\u51fa\u8fd9\u4e9b\u82b1\u5349\u7684\u79cd\u7c7b\u6210\u4e3a\u4e86\u690d\u7269\u5b66\u9886\u57df\u7684\u91cd\u8981\u7814\u7a76\u8bfe\u9898\u3002 \u6211\u56fd\u7684\u82b1\u5349\u7814\u7a76\u5386\u53f2\u60a0\u4e45\uff0c \u662f\u4e16\u754c\u4e0a\u7814\u7a76\u8f83\u65e9\u7684\u56fd\u5bb6\u4e4b\u4e00\u3002 \u82b1\u5349\u662f\u6211\u56fd\u91cd\u8981\u7684\u7269\u4ea7\u8d44\u6e90\uff0c \u9664\u7f8e\u5316\u4e86\u73af\u5883\uff0c \u8c03\u517b\u8eab\u5fc3\u5916\uff0c \u5b83\u8fd8\u5177\u6709\u836f\u7528\u4ef7\u503c\uff0c \u5e76\u4e14\u5728\u533b\u5b66\u9886\u57df\u4e3a\u4fdd\u969c\u4eba\u4eec\u7684\u5065\u5eb7\u8d77\u7740\u91cd\u8981\u4f5c\u7528\u3002<\/p>\n
\u82b1\u5349\u8bc6\u522b\u662f\u690d\u7269\u5b66\u9886\u57df\u7684\u4e00\u4e2a\u91cd\u8981\u8bfe\u9898\uff0c \u591a\u5e74\u6765\u5df2\u7ecf\u5f62\u6210\u4e00\u5b9a\u4f53\u7cfb\u5316\u5206\u7c7b\u7cfb\u7edf,\u4f46\u9700\u8981\u690d\u7269\u5b66\u5bb6\u8017\u8d39\u5927\u91cf\u7684\u7cbe\u529b\u4eba\u5de5\u5206\u6790\u3002 \u8fd9\u79cd\u65b9\u6cd5\u8981\u6c42\u6211\u4eec\u9996\u5148\u53bb\u4e86\u89e3\u82b1\u5349\u7684\u751f\u957f\u73af\u5883\uff0c \u8fd1\u800c\u53bb\u7814\u7a76\u82b1\u5349\u7684\u6574\u4f53\u5f62\u6001\u7279\u5f81\u3002 \u5728\u89c2\u5bdf\u690d\u682a\u5f62\u6001\u7279\u5f81\u65f6\u5c24\u5176\u662f\u91cd\u70b9\u89c2\u5bdf\u82b1\u5349\u7684\u82b1\u854a\u7279\u5f81\u3001 \u82b1\u5349\u7684\u7eb9\u7406\u989c\u8272\u548c\u5f62\u72b6\u53ca\u5176\u76f8\u5173\u4fe1\u606f\u7b49\u3002 \u7136\u540e\u5728\u548c\u73b0\u6709\u7684\u6837\u672c\u8fdb\u884c\u6bd4\u5bf9\uff0c \u6700\u7ec8\u786e\u5b9a\u82b1\u5349\u7684\u6240\u5c5e\u7c7b\u522b\u3002<\/p>\n
2 \u82b1\u5349\u8bc6\u522b\u7684\u57fa\u672c\u539f\u7406<\/h2>\n
\u82b1\u5349\u79cd\u7c7b\u8bc6\u522b\u529f\u80fd\u5b9e\u73b0\u7684\u4e3b\u8981\u9014\u5f84\u662f\u5229\u7528\u8ba1\u7b97\u673a\u5bf9\u6837\u672c\u8fdb\u884c\u5206\u7c7b\u3002 \u901a\u8fc7\u5bf9\u6837\u672c\u7684\u7cbe\u51c6\u5206\u7c7b\u8fbe\u5230\u5f97\u51fa\u56fe\u50cf\u8bc6\u522b\u7ed3\u679c\u7684\u76ee\u7684\u3002 \u7ecf\u5178\u7684\u82b1\u5349\u8bc6\u522b\u8bbe\u8ba1\u5982\u4e0b\u56fe \u6240\u793a\uff0c \u8fd9\u51e0\u4e2a\u8fc7\u7a0b\u76f8\u4e92\u5173\u8054\u800c\u53c8\u6709\u660e\u663e\u533a\u522b\u3002<\/p>\n
<\/p>\n
3 \u7b97\u6cd5\u5b9e\u73b0<\/h2>\n3.1 \u9884\u5904\u7406<\/h3>\n
\u9884\u5904\u7406\u662f\u5bf9\u5904\u4e8e\u6700\u4f4e\u62bd\u8c61\u7ea7\u522b\u7684\u56fe\u50cf\u8fdb\u884c\u64cd\u4f5c\u7684\u901a\u7528\u540d\u79f0\uff0c \u8f93\u5165\u548c\u8f93\u51fa\u5747\u4e3a\u5f3a\u5ea6\u56fe\u50cf\u3002 \u4e3a\u4e86\u4f7f\u5b9e\u9a8c\u7ed3\u679c\u66f4\u7cbe\u51c6\uff0c \u9700\u8981\u5bf9\u56fe\u50cf\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\uff0c \u6bd4\u5982\uff0c \u6839\u636e\u9700\u8981\u589e\u5f3a\u56fe\u50cf\u8d28\u91cf\u3001 \u5c06\u56fe\u50cf\u88c1\u526a\u6210\u5927\u5c0f\u4e00\u81f4\u7684\u5f62\u72b6\u3001 \u907f\u514d\u4e0d\u5fc5\u8981\u7684\u5931\u771f\u7b49\u7b49\u3002<\/p>\n
3.2 \u7279\u5f81\u63d0\u53d6\u548c\u9009\u62e9<\/h3>\n
\u8981\u60f3\u83b7\u53d6\u82b1\u5349\u56fe\u50cf\u4e2d\u7684\u6700\u5177\u4ee3\u8868\u6027\u7684\u9690\u542b\u4fe1\u606f\uff0c \u5c31\u5fc5\u987b\u5bf9\u82b1\u5349\u56fe\u50cf\u6570\u636e\u96c6\u8fdb\u884c\u76f8\u5e94\u7684\u53d8\u6362\u3002<\/p>\n
\u7279\u5f81\u63d0\u53d6\u65e8\u5728\u901a\u8fc7\u4ece\u73b0\u6709\u7279\u5f81\u4e2d\u521b\u5efa\u65b0\u7279\u5f81\uff08\u7136\u540e\u4e22\u5f03\u539f\u59cb\u7279\u5f81\uff09 \u6765\u51cf\u5c11\u6570\u636e\u96c6\u4e2d\u7684\u7279\u5f81\u6570\u91cf\u3002 \u7136\u540e\uff0c \u8fd9\u4e9b\u65b0\u7684\u7b80\u5316\u529f\u80fd\u96c6\u5e94\u8be5\u80fd\u591f\u6c47\u603b\u539f\u59cb\u529f\u80fd\u96c6\u4e2d\u5305\u542b\u7684\u5927\u591a\u6570\u4fe1\u606f\u3002 \u8fd9\u6837\uff0c \u53ef\u4ee5\u4ece\u539f\u59cb\u96c6\u5408\u7684\u7ec4\u5408\u4e2d\u521b\u5efa\u539f\u59cb\u7279\u5f81\u7684\u6458\u8981\u7248\u672c\u3002 \u5bf9\u6240\u83b7\u53d6\u7684\u4fe1\u606f\u5b9e\u73b0\u4ece\u6d4b\u91cf\u7a7a\u95f4\u5230\u7279\u5f81\u7a7a\u95f4\u7684\u8f6c\u6362\u3002<\/p>\n
3.3 \u5206\u7c7b\u5668\u8bbe\u8ba1\u548c\u51b3\u7b56<\/h3>\n
\u6784\u5efa\u5b8c\u6574\u7cfb\u7edf\u7684\u9002\u5f53\u5206\u7c7b\u5668\u7ec4\u4ef6\u7684\u4efb\u52a1\u662f\u4f7f\u7528\u7279\u5f81\u63d0\u53d6\u5668\u63d0\u4f9b\u7684\u7279\u5f81\u5411\u91cf\u5c06\u5bf9\u8c61\u5206\u914d\u7ed9\u7c7b\u522b\u3002 \u7531\u4e8e\u5b8c\u7f8e\u7684\u5206\u7c7b\u6027\u80fd\u901a\u5e38\u662f\u4e0d\u53ef\u80fd\u5b9e\u73b0\u7684\uff0c \u56e0\u6b64\u4e00\u822c\u7684\u4efb\u52a1\u662f\u786e\u5b9a\u6bcf\u79cd\u53ef\u80fd\u7c7b\u522b\u7684\u6982\u7387\u3002 \u8f93\u5165\u6570\u636e\u7684\u7279\u5f81\u5411\u91cf\u8868\u793a\u6240\u63d0\u4f9b\u7684\u62bd\u8c61\u4f7f\u5f97\u80fd\u591f\u5f00\u53d1\u51fa\u5728\u5c3d\u53ef\u80fd\u5927\u7a0b\u5ea6\u4e0a\u4e0e\u9886\u57df\u65e0\u5173\u7684\u5206\u7c7b\u7406\u8bba\u3002<\/p>\n
<\/p>\n
\u5728\u8bbe\u8ba1\u9636\u6bb5\uff0c \u51b3\u7b56\u529f\u80fd\u5fc5\u987b\u91cd\u590d\u591a\u6b21\uff0c \u76f4\u5230\u9519\u8bef\u8fbe\u5230\u7279\u5b9a\u6761\u4ef6\u4e3a\u6b62\u3002 \u5206\u7c7b\u51b3\u7b56\u662f\u5728\u5206\u7c7b\u5668\u8bbe\u8ba1\u9636\u6bb5\u57fa\u4e8e\u9884\u5904\u7406\u3001 \u7279\u5f81\u63d0\u53d6\u4e0e\u9009\u62e9\u53ca\u5224\u51b3\u51fd\u6570\u5efa\u7acb\u7684\u6a21\u578b\uff0c \u5bf9\u63a5\u6536\u5230\u7684\u6837\u672c\u6570\u636e\u8fdb\u884c\u5f52\u7c7b\uff0c \u7136\u540e\u8f93\u51fa\u5206\u7c7b\u7ed3\u679c\u3002<\/p>\n
3.4 \u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u57fa\u672c\u539f\u7406<\/h3>\n
\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u662f\u53d7\u5230\u751f\u7269\u5b66\u542f\u53d1\u7684\u6df1\u5ea6\u5b66\u4e60\u7ecf\u5178\u7684\u591a\u5c42\u524d\u9988\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u3002 \u662f\u4e00\u79cd\u5728\u56fe\u50cf\u5206\u7c7b\u4e2d\u5e7f\u6cdb\u4f7f\u7528\u7684\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\u3002<\/p>\n
CNN \u7684\u7075\u611f\u6765\u81ea\u6211\u4eec\u4eba\u7c7b\u5b9e\u9645\u770b\u5230\u5e76\u8bc6\u522b\u7269\u4f53\u7684\u65b9\u5f0f\u3002 \u8fd9\u662f\u57fa\u4e8e\u4e00\u79cd\u65b9\u6cd5\uff0c\u5373\u6211\u4eec\u773c\u775b\u4e2d\u7684\u795e\u7ecf\u5143\u7ec6\u80de\u53ea\u63a5\u6536\u5230\u6574\u4e2a\u5bf9\u8c61\u7684\u4e00\u5c0f\u90e8\u5206\uff0c\u800c\u8fd9\u4e9b\u5c0f\u5757\uff08\u79f0\u4e3a\u63a5\u53d7\u573a\uff09 \u88ab\u7ec4\u5408\u5728\u4e00\u8d77\u4ee5\u5f62\u6210\u6574\u4e2a\u5bf9\u8c61\u3002\u4e0e\u5176\u4ed6\u7684\u4eba\u5de5\u89c6\u89c9\u7b97\u6cd5\u4e0d\u4e00\u6837\u7684\u662f CNN \u53ef\u4ee5\u5904\u7406\u7279\u5b9a\u4efb\u52a1\u7684\u591a\u4e2a\u9636\u6bb5\u7684\u4e0d\u53d8\u7279\u5f81\u3002 \u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u4f7f\u7528\u7684\u5e76\u4e0d\u50cf\u7ecf\u5178\u7684\u4eba\u5de5\u795e\u7ecf\u7f51\u7edc\u90a3\u6837\u7684\u5168\u8fde\u63a5\u5c42\uff0c \u800c\u662f\u901a\u8fc7\u91c7\u53d6\u5c40\u90e8\u8fde\u63a5\u548c\u6743\u503c\u5171\u4eab\u7684\u65b9\u6cd5\uff0c \u6765\u4f7f\u8bad\u7ec3\u7684\u53c2\u6570\u91cf\u51cf\u5c11\uff0c \u964d\u4f4e\u6a21\u578b\u7684\u8bad\u7ec3\u590d\u6742\u5ea6\u3002<\/p>\n
CNN \u5728\u56fe\u50cf\u5206\u7c7b\u548c\u5176\u4ed6\u8bc6\u522b\u4efb\u52a1\u65b9\u9762\u5df2\u7ecf\u4f7f\u4f20\u7edf\u6280\u672f\u7684\u8bc6\u522b\u6548\u679c\u5f97\u5230\u663e\u8457\u7684\u6539\u5584\u3002 \u7531\u4e8e\u5728\u8fc7\u53bb\u7684\u51e0\u5e74\u4e2d\u5377\u79ef\u7f51\u7edc\u7684\u5feb\u901f\u53d1\u5c55\uff0c \u5bf9\u8c61\u5206\u7c7b\u548c\u76ee\u6807\u68c0\u6d4b\u80fd\u529b\u53d6\u5f97\u559c\u4eba\u7684\u6210\u7ee9\u3002<\/p>\n
\u5178\u578b\u7684 CNN \u542b\u6709\u591a\u4e2a\u5377\u79ef\u5c42\u548c\u6c60\u5316\u5c42\uff0c \u5e76\u5177\u6709\u5168\u8fde\u63a5\u5c42\u4ee5\u4ea7\u751f\u4efb\u52a1\u7684\u6700\u7ec8\u7ed3\u679c\u3002 \u5728\u56fe\u50cf\u5206\u7c7b\u4e2d\uff0c \u6700\u540e\u4e00\u5c42\u7684\u6bcf\u4e2a\u5355\u5143\u8868\u793a\u5206\u7c7b\u6982\u7387\u3002<\/p>\n
<\/p>\n
4 \u7b97\u6cd5\u5b9e\u73b0<\/h2>\n4.1 \u82b1\u5349\u56fe\u50cf\u6570\u636e<\/h3>\n
\u82b1\u5349\u56fe\u50cf\u7684\u83b7\u53d6\u9664\u4e86\u901a\u8fc7\u7528\u62cd\u6444\u8bbe\u5907\u624b\u5de5\u6536\u96c6\u6216\u662f\u901a\u8fc7\u7f51\u7edc\u4e0b\u8f7d\u5df2\u7ecf\u6574\u7406\u597d\u7684\u73b0\u6709\u6570\u636e\u96c6\uff0c \u8fd8\u53ef\u4ee5\u901a\u8fc7\u7f51\u7edc\u722c\u866b\u6280\u672f\u6536\u96c6\u6574\u7406\u81ea\u5df1\u7684\u6570\u636e\u96c6\u3002<\/p>\n
<\/p>\n
\u4ee5roses\u79cd\u7c7b\u7684\u8bad\u7ec3\u6570\u636e\u4e3a\u4f8b\uff0c\u6587\u4ef6\u5939\u5185\u90e8\u5747\u4e3a\u8be5\u79cd\u7c7b\u82b1\u7684\u56fe\u50cf\u6587\u4ef6<\/p>\n
<\/p>\n
4.2 \u6a21\u5757\u7ec4\u6210<\/h3>\n
\u793a\u4f8b\u4ee3\u7801\u4e3b\u8981\u7531\u56db\u4e2a\u6a21\u5757\u7ec4\u6210\uff1a<\/p>\n
\n- input_data.py\u2014\u2014\u56fe\u50cf\u7279\u5f81\u63d0\u53d6\u6a21\u5757\uff0c\u6a21\u5757\u751f\u6210\u56db\u79cd\u82b1\u7684\u54c1\u7c7b\u56fe\u7247\u8def\u5f84\u53ca\u5bf9\u5e94\u6807\u7b7e\u7684List<\/li>\n
- model.py\u2014\u2014\u6a21\u578b\u6a21\u5757\uff0c\u6784\u5efa\u5b8c\u6574\u7684CNN\u6a21\u578b<\/li>\n
- train.py\u2014\u2014\u8bad\u7ec3\u6a21\u5757\uff0c\u8bad\u7ec3\u6a21\u578b\uff0c\u5e76\u4fdd\u5b58\u8bad\u7ec3\u6a21\u578b\u7ed3\u679c<\/li>\n
- test.py\u2014\u2014\u6d4b\u8bd5\u6a21\u5757\uff0c\u6d4b\u8bd5\u6a21\u578b\u5bf9\u56fe\u7247\u8bc6\u522b\u7684\u51c6\u786e\u5ea6<\/li>\n<\/ul>\n
\u9879\u76ee\u6a21\u5757\u6267\u884c\u987a\u5e8f<\/p>\n
\u8fd0\u884ctrain.py\u5f00\u59cb\u8bad\u7ec3\u3002
\u8bad\u7ec3\u5b8c\u6210\u540e- \u8fd0\u884ctest.py\uff0c\u67e5\u770b\u5b9e\u9645\u6d4b\u8bd5\u7ed3\u679c
input_data.py\u2014\u2014\u56fe\u50cf\u7279\u5f81\u63d0\u53d6\u6a21\u5757\uff0c\u6a21\u5757\u751f\u6210\u56db\u79cd\u82b1\u7684\u54c1\u7c7b\u56fe\u7247\u8def\u5f84\u53ca\u5bf9\u5e94\u6807\u7b7e\u7684List<\/p>\n
import<\/span> os import<\/span> math import<\/span> numpy as<\/span> np import<\/span> tensorflow as<\/span> tf import<\/span> matplotlib.<\/span>pyplot as<\/span> plt # -----------------\u751f\u6210\u56fe\u7247\u8def\u5f84\u548c\u6807\u7b7e\u7684List------------------------------------<\/span> train_dir =<\/span> 'D:\/ML\/flower\/input_data'<\/span> roses =<\/span> [<\/span>]<\/span> label_roses =<\/span> [<\/span>]<\/span> tulips =<\/span> [<\/span>]<\/span> label_tulips =<\/span> [<\/span>]<\/span> dandelion =<\/span> [<\/span>]<\/span> label_dandelion =<\/span> [<\/span>]<\/span> sunflowers =<\/span> [<\/span>]<\/span> label_sunflowers =<\/span> [<\/span>]<\/span> <\/code><\/pre>\n\u5b9a\u4e49\u51fd\u6570get_files,\u83b7\u53d6\u56fe\u7247\u5217\u8868\u53ca\u6807\u7b7e\u5217\u8868<\/strong><\/p>\n# step1\uff1a\u83b7\u53d6\u6240\u6709\u7684\u56fe\u7247\u8def\u5f84\u540d\uff0c\u5b58\u653e\u5230<\/span> # \u5bf9\u5e94\u7684\u5217\u8868\u4e2d\uff0c\u540c\u65f6\u8d34\u4e0a\u6807\u7b7e\uff0c\u5b58\u653e\u5230label\u5217\u8868\u4e2d\u3002<\/span> def<\/span> get_files<\/span>(<\/span>file_dir,<\/span> ratio)<\/span>:<\/span> for<\/span> file<\/span> in<\/span> os.<\/span>listdir(<\/span>file_dir +<\/span> '\/roses'<\/span>)<\/span>:<\/span> roses.<\/span>append(<\/span>file_dir +<\/span> '\/roses'<\/span> +<\/span> '\/'<\/span> +<\/span> file<\/span>)<\/span> label_roses.<\/span>append(<\/span>0<\/span>)<\/span> for<\/span> file<\/span> in<\/span> os.<\/span>listdir(<\/span>file_dir +<\/span> '\/tulips'<\/span>)<\/span>:<\/span> tulips.<\/span>append(<\/span>file_dir +<\/span> '\/tulips'<\/span> +<\/span> '\/'<\/span> +<\/span> file<\/span>)<\/span> label_tulips.<\/span>append(<\/span>1<\/span>)<\/span> for<\/span> file<\/span> in<\/span> os.<\/span>listdir(<\/span>file_dir +<\/span> '\/dandelion'<\/span>)<\/span>:<\/span> dandelion.<\/span>append(<\/span>file_dir +<\/span> '\/dandelion'<\/span> +<\/span> '\/'<\/span> +<\/span> file<\/span>)<\/span> label_dandelion.<\/span>append(<\/span>2<\/span>)<\/span> for<\/span> file<\/span> in<\/span> os.<\/span>listdir(<\/span>file_dir +<\/span> '\/sunflowers'<\/span>)<\/span>:<\/span> sunflowers.<\/span>append(<\/span>file_dir +<\/span> '\/sunflowers'<\/span> +<\/span> '\/'<\/span> +<\/span> file<\/span>)<\/span> label_sunflowers.<\/span>append(<\/span>3<\/span>)<\/span> # step2\uff1a\u5bf9\u751f\u6210\u7684\u56fe\u7247\u8def\u5f84\u548c\u6807\u7b7eList\u505a\u6253\u4e71\u5904\u7406<\/span> image_list =<\/span> np.<\/span>hstack(<\/span>(<\/span>roses,<\/span> tulips,<\/span> dandelion,<\/span> sunflowers)<\/span>)<\/span> label_list =<\/span> np.<\/span>hstack(<\/span>(<\/span>label_roses,<\/span> label_tulips,<\/span> label_dandelion,<\/span> label_sunflowers)<\/span>)<\/span> # \u5229\u7528shuffle\u6253\u4e71\u987a\u5e8f<\/span> temp =<\/span> np.<\/span>array(<\/span>[<\/span>image_list,<\/span> label_list]<\/span>)<\/span> temp =<\/span> temp.<\/span>transpose(<\/span>)<\/span> np.<\/span>random.<\/span>shuffle(<\/span>temp)<\/span> # \u5c06\u6240\u6709\u7684img\u548clab\u8f6c\u6362\u6210list<\/span> all_image_list =<\/span> list<\/span>(<\/span>temp[<\/span>:<\/span>,<\/span> 0<\/span>]<\/span>)<\/span> all_label_list =<\/span> list<\/span>(<\/span>temp[<\/span>:<\/span>,<\/span> 1<\/span>]<\/span>)<\/span> # \u5c06\u6240\u5f97List\u5206\u4e3a\u4e24\u90e8\u5206\uff0c\u4e00\u90e8\u5206\u7528\u6765\u8bad\u7ec3tra\uff0c\u4e00\u90e8\u5206\u7528\u6765\u6d4b\u8bd5val<\/span> # ratio\u662f\u6d4b\u8bd5\u96c6\u7684\u6bd4\u4f8b<\/span> n_sample =<\/span> len<\/span>(<\/span>all_label_list)<\/span> n_val =<\/span> int<\/span>(<\/span>math.<\/span>ceil(<\/span>n_sample *<\/span> ratio)<\/span>)<\/span> # \u6d4b\u8bd5\u6837\u672c\u6570<\/span> n_train =<\/span> n_sample -<\/span> n_val # \u8bad\u7ec3\u6837\u672c\u6570<\/span> tra_images =<\/span> all_image_list[<\/span>0<\/span>:<\/span>n_train]<\/span> tra_labels =<\/span> all_label_list[<\/span>0<\/span>:<\/span>n_train]<\/span> tra_labels =<\/span> [<\/span>int<\/span>(<\/span>float<\/span>(<\/span>i)<\/span>)<\/span> for<\/span> i in<\/span> tra_labels]<\/span> val_images =<\/span> all_image_list[<\/span>n_train:<\/span>-<\/span>1<\/span>