{"id":8209,"date":"2024-04-23T21:01:01","date_gmt":"2024-04-23T13:01:01","guid":{"rendered":""},"modified":"2024-04-23T21:01:01","modified_gmt":"2024-04-23T13:01:01","slug":"ANM(Nonlinear causal discovery with additive noise models)","status":"publish","type":"post","link":"https:\/\/mushiming.com\/8209.html","title":{"rendered":"ANM(Nonlinear causal discovery with additive noise models)"},"content":{"rendered":"
\u5728\u4e0a\u4e00\u7bc7\u6587\u7ae0\u6211\u4eec\u8bb2\u4e86\u5f53\u6570\u636e\u80cc\u540e\u7684\u751f\u6210\u673a\u5236\u662f\u7ebf\u6027\u7684\u65f6\u5019\uff0c\u6211\u4eec\u5982\u4f55\u4ece\u6570\u636e\u4e2d\u6062\u590d\u51fa\u5176\u80cc\u540e\u7684\u56e0\u679c\u7ed3\u6784\u3002\u90a3\u4e48\u5f53\u6570\u636e\u80cc\u540e\u751f\u6210\u7684\u673a\u5236\u662f\u975e\u7ebf\u6027\u7684\u65f6\u5019\uff0c\u6211\u4eec\u8be5\u5982\u4f55\u4ece\u6570\u636e\u4e2d\u6062\u590d\u51fa\u5176\u80cc\u540e\u7684\u56e0\u679c\u7ed3\u6784\u5462\uff1f<\/p>\n
\u672c\u7bc7\u6587\u7ae0\u5206\u4eab\u7684\u8bba\u6587\u5c31\u662f\u63d0\u51fa\u4e86\u4e00\u4e2a\u65b9\u6cd5\uff0c\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u6ee1\u8db3\u4e00\u5b9a\u7684\u5047\u8bbe\u6761\u4ef6\u4e0b\u6062\u590d\u51fa\u6570\u636e\u80cc\u540e\u7684\u56e0\u679c\u7ed3\u6784\u3002<\/p>\n
\u5728LiNGAM\u4e2d\uff0c\u6211\u4eec\u77e5\u9053\u6211\u4eec\u4e4b\u6240\u4ee5\u80fd\u591f\u8bc6\u522b\u56e0\u679c\u7ed3\u6784\uff0c\u5f97\u76ca\u4e8e\u566a\u58f0\u9879\uff08\u6270\u52a8\u9879\uff09\u7684\u975e\u9ad8\u65af\u6027\u6240\u5177\u6709\u7684\u975e\u5bf9\u79f0\u6027\uff0c\u90a3\u4e48\u540c\u7406\uff0c\u5bf9\u4e8e\u5177\u6709\u975e\u5bf9\u79f0\u6027\u7684\u975e\u7ebf\u6027\u51fd\u6570\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u4ece\u6570\u636e\u4e2d\u6062\u590d\u51fa\u56e0\u679c\u7ed3\u6784\u5417\uff1f<\/strong><\/p>\n ANM\u7ed9\u51fa\u4e86\u8fd9\u4e2a\u95ee\u9898\u7684\u56de\u7b54\uff0c\u662f\u7684\uff0c\u975e\u7ebf\u6027\u4e0e\u975e\u9ad8\u65af\u5177\u6709\u975e\u5e38\u76f8\u4f3c\u7684\u4e00\u4e9b\u6027\u8d28\uff0c\u975e\u7ebf\u6027\u4e5f\u53ef\u4ee5\u6253\u7834\u53d8\u91cf\u4e4b\u95f4\u7684\u5bf9\u79f0\u6027\uff0c\u8fdb\u800c\u5141\u8bb8\u6211\u4eec\u8bc6\u522b\u53d8\u91cf\u95f4\u7684\u56e0\u679c\u5173\u7cfb\u65b9\u5411\u3002<\/strong><\/p>\n \u8fd9\u7bc7\u6587\u7ae0\u6307\u51fa\uff1a\u5bf9\u4e8e\u4efb\u4f55\u5177\u6709\u52a0\u6027\u566a\u58f0\u7684\u975e\u7ebf\u6027\u6a21\u578b\uff0c\u51e0\u4e4e\u4efb\u4f55\u975e\u7ebf\u6027\uff08\u53ef\u9006\u6216\u4e0d\u53ef\u9006\uff09\u901a\u5e38\u90fd\u4f1a\u4ea7\u751f\u53ef\u8bc6\u522b\u7684\u6a21\u578b\u3002<\/strong>(for nonlinear models with additive noise almost any nonlinearities (invertible or not) will typically yield identifiable models)<\/p>\n \u8fd9\u7bc7\u6587\u7ae0\u5047\u8bbe\u6570\u636e\u7684\u751f\u6210\u65b9\u5f0f\u4e3a\uff1a\uff0c\u662f\u4efb\u610f\u51fd\u6570\uff0c<\/strong>\u4ee3\u8868\u7684\u5c31\u662f\u8282\u70b9i\u7684\u7236\u8282\u70b9\u96c6\u5408\u3002\u8868\u793a\u5177\u6709\u4efb\u610f\u6982\u7387\u5bc6\u5ea6\u7684\u566a\u58f0\u53d8\u91cf\u3002<\/p>\n \u5728\u8fd9\u7bc7\u6587\u7ae0\u4e2d\uff0c\u901a\u8fc7\u6539\u53d8\u51fd\u6570f\u7684\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027\uff0c\u8fdb\u800c\u8bf4\u660e\u4e86\u5f53\u51fd\u6570\u65f6\u975e\u7ebf\u6027\u65f6\uff0c\u6a21\u578b\u7684\u53ef\u8bc6\u522b\u6027\u3002\u5bf9\u6bd4\u56fe\u5982\u4e0b\uff1a<\/p>\n <\/p>\n (a-c)\u662ff\u5c5e\u4e8e\u7ebf\u6027\u7684\u60c5\u51b5\uff0c\u7531\u4e0a\u56fe\u53ef\u77e5\uff0c\u5728\u56e0\u679c\u51fd\u6570\u662f\u7ebf\u6027\u4e14\u566a\u58f0\u9879\u65f6\u9ad8\u65af\u7684\u60c5\u51b5\u4e0b\uff0cP(x|y)\u4e0eP(y|x)\u7684\u503c\u5bf9\u4e8e\u4e0d\u540c\u53d6\u503c\u90fd\u662f\u76f8\u4f3c\u7684\uff0c\u6240\u4ee5\u65e0\u6cd5\u533a\u5206\u3002<\/p>\n (d-f)\u662ff\u662f\u975e\u7ebf\u6027\u7684\u60c5\u51b5\uff0c\u7531\u4e0a\u56fe\u53ef\u77e5\uff0c\u5f53\u56e0\u679c\u51fd\u6570\u662f\u975e\u7ebf\u6027\u7684\u60c5\u51b5\u4e0b\uff0cP(x|y)\u4e0eP(y|x)\u7684\u503c\u5bf9\u4e8e\u4e0d\u540c\u53d6\u503c\u662f\u53ef\u4ee5\u533a\u5206\u7684\u3002\u6240\u4ee5\u57fa\u4e8e\u4e0a\u56fe\uff0c\u6211\u4eec\u6709\u7406\u7531\u8ba4\u4e3a\u56e0\u679c\u51fd\u6570\u7684\u975e\u7ebf\u6027\u6709\u52a9\u4e8e\u6211\u4eec\u8bc6\u522b\u56e0\u679c\u5173\u7cfb\u65b9\u5411\u3002<\/p>\n \u8be5\u7bc7\u6587\u7ae0\u5047\u8bbe\u6240\u6709\u7684\u51fd\u6570\uff08\uff09\u90fd\u662f\u4e09\u9636\u53ef\u5bfc\uff0c\u5728\u8fd9\u4e2a\u5047\u8bbe\u4e0b\uff0c\u6587\u7ae0\u7ed9\u51fa\u7684\u5b9a\u7406\u548c\u63a8\u8bba\u8bc1\u660e\u4e86\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u5b58\u5728backward model\uff08backward model\u6307\u7684\u662f\u90a3\u79cd\u56e0\u679c\u5173\u7cfb\u5728\u4e24\u4e2a\u65b9\u5411\u90fd\u6210\u7acb\u7684\u60c5\u51b5x->y\u4e0ex<-y\u540c\u65f6\u5b58\u5728\uff09\u3002<\/strong><\/p>\n <\/p>\n \u8fd9\u4e2a\u5b9a\u74061\u63cf\u8ff0\u7684\u5c31\u662f\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u4f1a\u5b58\u5728backward model\u3002\u5373\u5f53\u7ed9\u5b9a\u56fa\u5b9a\u7684\u51fd\u6570F\u548cV\u65f6\uff0c\u5982\u679cy\u6ee1\u8db3\uff0c\u5219\u5c31\u4f1a\u5b58\u5728\u4e00\u4e2abackward model\u3002<\/p>\n <\/p>\n \u8fd9\u4e2a\u63a8\u8bba\u63cf\u8ff0\u7684\u5c31\u662f\u5f53\u4ec0\u4e48\u65f6\u5019\u5b58\u5728backward model\u7684\u65f6\u5019\uff0c\u6211\u4eec\u53ef\u4ee5\u53cd\u63a8\u5f97\u5230\u6570\u636e\u7684\u751f\u6210\u673a\u5236\u65f6\u7ebf\u6027\u7684\u3002<\/p>\n \u4e0a\u9762\u8bb2\u5b8c\u4e86\u6a21\u578b\u7684\u53ef\u8bc6\u522b\u6027\u5982\u4f55\u5f97\u5230\u540e\uff0c\u4e0b\u9762\u5c31\u8981\u8bb2\u8bb2\u600e\u4e48\u5229\u7528\u975e\u7ebf\u6027\u53bb\u4f30\u8ba1\u6a21\u578b\u4e86\uff0c\u4e5f\u5c31\u662f\u5982\u4f55\u5f97\u5230\u56e0\u679c\u5173\u7cfb\u65b9\u5411\u4e86\uff0c\u5927\u81f4\u6b65\u9aa4\u5982\u4e0b\u3002<\/p>\n \u5f53\u7136\u8be5\u7b97\u6cd5\u6240\u5f97\u5230\u7684\u4f9d\u7136\u662f\u4e00\u7ec4\u7b26\u5408\u6570\u636e\u751f\u6210\u673a\u5236\u7684DAG\u3002\u4e0b\u9762\u662f\u8be5\u7b97\u6cd5\u5728\u4eff\u771f\u6570\u636e\u4e0a\u7684\u8868\u73b0\uff0c\u6211\u4eec\u7684\u6a21\u578b\u4e3a\uff1a\u3002\u53d8\u91cfx\u4e0en\u90fd\u4ece\u9ad8\u65af\u5206\u5e03\u4e2d\u91c7\u6837\u3002\u5b9e\u9a8c\u7ed3\u679c\u5982\u4e0b\u6240\u793a\uff1a<\/p>\n <\/p>\n \u56fe\u4e2d\u7684q\u7684\u662f\u63a7\u5236\u566a\u58f0\u9879\u7684\u5206\u5e03\uff0cq=1\u65f6\u9ad8\u65af\u5206\u5e03\uff0cq>1\u548cq<1\u5206\u522b\u65f6super-Gaussian\u548csub-Gaussian\u5206\u5e03\uff1bb\u63a7\u5236\u7684\u662f\u975e\u7ebf\u6027\u7684\u7a0b\u5ea6\uff0cb=0\u662f\u5c31\u662f\u7ebf\u6027\u3002\u4ece\u56fea\u4e2d\u6211\u4eec\u53ef\u4ee5\u770b\u5230\uff0c\u5f53\u51fd\u6570\u662f\u7ebf\u6027\u4e14\u566a\u58f0\u9879\u662f\u975e\u9ad8\u65af\u7684\u65f6\u5019\uff0c\u6a21\u578b\u662f\u53ef\u8bc6\u522b\u7684\u3002\u4f46\u662f\u5982\u679c\u662f\u51fd\u6570\u662f\u7ebf\u6027\u4f46\u662f\u566a\u58f0\u9879\u65f6\u9ad8\u65af\u7684\u65f6\u5019\uff0c\u6a21\u578b\u662f\u65e0\u6cd5\u8bc6\u522b\u7684\u3002\u4ece\u56feb\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\uff0c\u5f53\u51fd\u6570\u662f\u975e\u7ebf\u6027\u65f6\uff0c\u5373\u4f7f\u566a\u58f0\u9879\u65f6\u9ad8\u65af\u7684\uff0c\u90a3\u4e48\u6a21\u578b\u4e5f\u662f\u53ef\u4ee5\u533a\u5206\u7684\u3002<\/p>\n \u8bb2\u5b8c\u6a21\u578b\u4e3a\u4ec0\u4e48\u53ef\u8bc6\u522b\uff0c\u5982\u4f55\u8bc6\u522b\u548c\u4f30\u8ba1\u540e\uff0c\u8fd9\u7bc7\u8bba\u6587\u7684\u6838\u5fc3\u5185\u5bb9\u4e5f\u5c31\u5dee\u4e0d\u591a\u8bb2\u5b8c\u4e86\uff0c\u90a3\u4e48\u8fd9\u4e2a\u65b9\u6cd5\u6709\u4ec0\u4e48\u7f3a\u70b9\u5462\uff1f\u5f88\u5bb9\u6613\u60f3\u5230\u7684\u4e00\u70b9\u5c31\u662f\uff0c\u65f6\u95f4\u5f00\u9500\u4f1a\u5f88\u9ad8\uff0c\u56e0\u4e3a\u5176\u662f\u4e00\u5bf9\u4e00\u5bf9\u53d8\u91cf\u4e4b\u95f4\u505a\u65b9\u5411\u786e\u5b9a\uff0c\u5047\u8bbe\u6709N\u4e2a\u8282\u70b9\uff0c\u8fd9\u4e00\u6b65\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5927\u81f4\u5c31\u4e3aO(N^2),\u5e76\u4e14\u8fd8\u6ca1\u8003\u8651\u505a\u56de\u5f52\u65f6\u7684\u8017\u65f6\uff0c\u6240\u4ee5\u8bba\u6587\u4e2d\u4e5f\u6709\u8bb2\u5230\u5bf9\u4e8e\u5c0f\u578b\u7f51\u7edc\u6765\u8bb2\u662f\u5408\u7406\u7684\u3002\u5f53\u7136\u8bba\u6587\u4e2d\u4e5f\u63d0\u51fa\u4e86\u53ef\u80fd\u5b58\u5728\u591a\u91cd\u5047\u8bbe\u68c0\u9a8c<\/strong>\u7684\u95ee\u9898\uff08\u4e3e\u4e2a\u4f8b\u5b50\uff0c\u5047\u8bbe\u65b9\u5411\u8bc6\u522b\u9519\u8bef\u7684\u53ef\u80fd\u6027\u4e3a1%\uff0c\u90a3\u4e48\u505a100\u6b21\u68c0\u9a8c\u5c31\u5f88\u53ef\u80fd\u4f1a\u51fa\u73b01\u6b21\uff0c\u5e76\u4e14\u4f34\u968f\u7740\u68c0\u9a8c\u6b21\u6570\u7684\u589e\u591a\uff0c\u8fd9\u4e2a\u51fa\u73b0\u9519\u8bef\u7684\u6b21\u6570\u4e5f\u4f1a\u589e\u52a0\uff0c\u800c\u591a\u91cd\u5047\u8bbe\u68c0\u9a8c\u5c31\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\uff09\u3002<\/strong><\/p>\n \u5728\u4e86\u89e3\u5b8cDirect-LiNGAM\u4e0eANM\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u53d1\u73b0\u5176\u90fd\u662f\u57fa\u4e8eSCM\u65b9\u7a0b\uff08\u56e0\u679c\u5173\u7cfb\u51fd\u6570\u548c\u5916\u751f\u53d8\u91cf\u6216\u8005\u8bf4\u566a\u58f0\uff09\u5e76\u4e14\u5229\u7528\u56e0\u679c\u5173\u7cfb\u7684\u4e0d\u5bf9\u79f0\u6027\u6765\u8fdb\u884c\u56e0\u679c\u5173\u7cfb\u53d1\u73b0\u7684\u65b9\u6cd5\u3002\u5c31\u6bd4\u5982\u8bf4Direct-LINGAM\u5c31\u662f\u5229\u7528\u4e86\u975e\u9ad8\u65af\u566a\u58f0\u6240\u5177\u6709\u7684\u4e0d\u5bf9\u79f0\u6027\u3001ANM\u5c31\u662f\u5229\u7528\u4e86\u975e\u7ebf\u6027\u51fd\u6570\u7684\u4e0d\u5bf9\u79f0\u6027\u3002\u5f53\u7136\u8bf4\u5230\u8fd9\u91cc\uff0c\u6211\u4eec\u8fd8\u80fd\u4e0d\u80fd\u4ece\u522b\u7684\u89d2\u5ea6\u5229\u7528\u8fd9\u4e2a\u56e0\u679c\u5173\u7cfb\u7684\u4e0d\u5bf9\u79f0\u6027\u5462\uff1f\u6bd4\u5982\u8bf4\u4fe1\u606f\u8bba\u7684\u89d2\u5ea6\u5462\uff1f\u5f53\u7136\u6211\u4eec\u4e5f\u53ef\u4ee5\u5c31\u4ece\u8fd9\u4e2a\u5df2\u7ecf\u63d0\u51fa\u6765\u7684\u89d2\u5ea6\u4e2d\uff0c\u53bb\u601d\u8003\u6709\u6ca1\u6709\u522b\u7684\u65b9\u6cd5\u5728\u975e\u7ebf\u6027\u6216\u8005\u7ebf\u6027\u9ad8\u65af\u7684\u60c5\u51b5\u4e0b\u53bb\u505a\u56e0\u679c\u5173\u7cfb\u53d1\u73b0\u3002<\/strong><\/p>\n \u672c\u7bc7\u6587\u7ae0\u5206\u4eab\u5230\u8fd9\u5c31\u7ed3\u675f\u4e86\uff0c\u5982\u679c\u5199\u7684\u4e0d\u5bf9\uff0c\u8bf7\u5927\u5bb6\u6307\u51fa\u6765\uff0c\u8c22\u8c22\u5927\u5bb6\u9605\u8bfb\u3002<\/strong><\/p><\/p>\n","protected":false},"excerpt":{"rendered":"ANM(Nonlinear causal discovery with additive noise models)\u5728\u4e0a\u4e00\u7bc7\u6587\u7ae0\u4e2d\u8bb2\u4e86\u4ec0\u4e48\u662fDirect-LiNGAM\uff0c\u8bb2\u4e86\u5f53\u6570\u636e\u80cc\u540e\u7684\u751f\u6210...","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[],"tags":[],"_links":{"self":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts\/8209"}],"collection":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/comments?post=8209"}],"version-history":[{"count":0,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts\/8209\/revisions"}],"wp:attachment":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/media?parent=8209"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/categories?post=8209"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/tags?post=8209"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}\n