{"id":8611,"date":"2024-04-28T21:01:01","date_gmt":"2024-04-28T13:01:01","guid":{"rendered":""},"modified":"2024-04-28T21:01:01","modified_gmt":"2024-04-28T13:01:01","slug":"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK \/ QAM\uff09","status":"publish","type":"post","link":"https:\/\/mushiming.com\/8611.html","title":{"rendered":"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK \/ QAM\uff09"},"content":{"rendered":"

\n <\/path> \n<\/svg> <\/p>\n

\"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK
\u6211\u4eec\u5c06\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u5206\u4e3a\u4e09\u4e2a\u4e3b\u8981\u6a21\u5757<\/strong><\/mark>\uff1a<\/p>\n

    \n
  1. \u4fe1\u6e90\u9ed8\u8ba4\u4e3a\u6570\u5b57\u4fe1\u6e90\uff0c\u4f46\u662f\u5982\u679c\u662f\u6a21\u62df\u4fe1\u6e90\uff0c\u8fd8\u9700\u8981\u6a21\u6570\u8f6c\u6362<\/strong>\uff08\u5305\u542b\u91c7\u6837\u3001\u91cf\u5316\u3001\u7f16\u7801<\/strong>\uff0c\u672a\u753b\u51fa\uff09<\/li>\n
  2. \u6570\u5b57\u4fe1\u6e90\u7ecf\u8fc7\u4fe1\u6e90\u7f16\u7801\u3001\u4fe1\u9053\u7f16\u7801\u548c\u4ea4\u7ec7<\/strong>\u5904\u7406\uff0c\u63d0\u9ad8\u4e86\u6709\u6548\u6027\u548c\u53ef\u9760\u6027<\/li>\n
  3. \u7136\u540e\u8fdb\u884c\u6570\u5b57\u8c03\u5236<\/strong>\uff08\u5373\uff1a\u4ece\u6570\u5b57\u4fe1\u53f7\u5230\u9891\u5e26\u6a21\u62df\u6ce2\u5f62\uff09\uff0c\u5305\u62ec\u6bd4\u7279\u6620\u5c04\u3001\u8109\u51b2\u6210\u5f62\u3001\u4e0a\u53d8\u9891<\/strong>\u4e09\u4e2a\u6b65\u9aa4\uff08\u5176\u4e2d\u6bd4\u7279\u6620\u5c04\u662fIQ\u8c03\u5236\u5e26\u6765\u7684\uff0c\u4e0a\u56fe\u672a\u753b\u51fa\uff09<\/li>\n<\/ol>\n

    \u6570\u5b57\u8c03\u5236<\/h3>\n
      \n
    • \u5728\u6a21\u62df\u901a\u4fe1\u7cfb\u7edf\u4e2d\uff0c\u6a21\u62df\u8c03\u5236<\/strong>\u662f\u6307\u5c06\u57fa\u5e26\u4fe1\u53f7\u7684\u9891\u8c31\u642c\u79fb\u5230\u8f7d\u6ce2\u7684\u8fc7\u7a0b\uff1b
      \u7279\u70b9\uff1a\u7528\u9ad8\u9891\u8f7d\u6ce2\u627f\u8f7d\u6a21\u62df\u4fe1\u53f7\uff08\u4e00\u6bb5\u4e0d\u65ad\u53d8\u5316\u7684\u6ce2\u5f62\uff09<\/li>\n
    • \u800c\u5728\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u4e2d\uff0c\u6570\u5b57\u8c03\u5236<\/strong>\uff08\u6570\u5b57\u9891\u5e26\u8c03\u5236\uff09\u4e00\u822c\u6307\u4ece\u4fe1\u606f\u6bd4\u7279\u6620\u5c04\u5230\u9891\u5e26\u4fe1\u53f7\u7684\u6574\u4e2a\u8fc7\u7a0b<\/strong><\/mark>\uff1b
      \u7279\u70b9\uff1a\u627f\u8f7d\u6570\u5b57\u4fe1\u53f7\uff08\u7279\u70b9\u662f\u53ef\u4ee5\u5bf9\u5e94\u5230\u6709\u9650\u79cd\u6ce2\u5f62\uff09\uff0c\u7528\u9ad8\u9891\u8f7d\u6ce2\u627f\u8f7d\u7ea6\u5b9a\u7684\u201c\u6ce2\u5f62\u201d<\/strong>
      \u56e0\u6b64\uff0c\u6570\u5b57\u8c03\u5236\u4e00\u5b9a\u7a0b\u5ea6\u4e0a\u80fd\u4fdd\u8bc1\u65e0\u5dee\u9519\u7684\u4f20\u8f93\u4fe1\u606f\uff0c\u8fd9\u4e5f\u662f\u4e3a\u4ec0\u4e48\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u66f4\u52a0\u53ef\u9760<\/strong><\/li>\n<\/ul>\n
      \n
        \n
      • \u201c\u8109\u51b2\u6210\u5f62\u201d\u90e8\u5206\u5728\u6559\u79d1\u4e66\u4e0a\u79f0\u4e3a\u201c\u6570\u5b57\u57fa\u5e26\u8c03\u5236\u201d\uff08PAM\uff0c\u5373\u6bd4\u7279\u6620\u5c04+\u8109\u51b2\u6210\u5f62\uff09\uff1b<\/li>\n
      • \u800c\u6574\u4e2a\u6570\u5b57\u8c03\u5236\u5728\u6559\u79d1\u4e66\u4e0a\u79f0\u4e3a\u201c\u6570\u5b57\u9891\u5e26\u8c03\u5236\u201d\uff08PSK\u3001QAM\u7b49\uff0c\u5373\u6bd4\u7279\u6620\u5c04+\u8109\u51b2\u6210\u5f62+\u4e0a\u53d8\u9891\u4e09\u6b65\u5408\u5e76\uff0c\u4f7f\u7528IQ\u8c03\u5236\u6765\u5b9e\u73b0\uff09\uff0c\u4e00\u822c\u8bf4\u6570\u5b57\u8c03\u5236\u5c31\u662f\u6307\u201c\u6570\u5b57\u9891\u5e26\u8c03\u5236\u201d<\/strong><\/li>\n<\/ul>\n<\/blockquote>\n

        \u7b80\u5355\u6765\u8bf4\uff0c\u6570\u5b57\u8c03\u5236\uff0c\u5c31\u662f\u8f93\u516501\u6bd4\u7279\uff0c\u8f93\u51fa\u7ea6\u5b9a\u7684\u6b63\u5f26\u6ce2\u5f62<\/strong>\uff08\u5177\u6709\u7279\u5b9a\u9891\u7387\/\u5e45\u503c\/\u76f8\u4f4d\uff09<\/p>\n

        IQ\u8c03\u5236<\/h4>\n

        \u6570\u5b57\u8c03\u5236\u6700\u5e38\u89c1\u7684\u5b9e\u73b0\u65b9\u6cd5\u5c31\u662fIQ\u8c03\u5236<\/strong>\uff1a\u5f53\u8f93\u5165IQ\u4e24\u8def\u4fe1\u53f7\u4e3a\u5e38\u6570\u65f6\uff0cIQ\u8c03\u5236\u8f93\u51fa\u4fe1\u53f7\u7684\u5b9e\u90e8\u5c31\u662f\u4e00\u4e2a\u5e45\u503c\u76f8\u4f4d\u7279\u5b9a\u7684\u6b63\u5f26\u6ce2<\/mark><\/p>\n

        \u4e0b\u9762\u4ece\u590d\u4fe1\u53f7\u7684\u89d2\u5ea6\u5206\u6790IQ\u8c03\u5236\u539f\u7406\uff1a<\/p>\n

        \n

        \u56de\u987e\uff1a
        IQ\u8c03\u5236\u5c31\u662f\u4f20\u8f93\u5b9e\u4fe1\u53f7<\/strong> s ( t ) = x ( t ) cos \u2061 ( \u03c9 c t ) \u2212 y ( t ) sin \u2061 ( \u03c9 c t ) s(t)=x(t) \\cos \\left(\\omega_{c} t\\right)-y(t) \\sin \\left(\\omega_{c} t\\right) <\/span><\/span>s<\/span>(<\/span>t<\/span>)<\/span><\/span>=<\/span><\/span><\/span><\/span>x<\/span>(<\/span>t<\/span>)<\/span><\/span>cos<\/span><\/span>(<\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span>)<\/span><\/span><\/span>\u2212<\/span><\/span><\/span><\/span>y<\/span>(<\/span>t<\/span>)<\/span><\/span>sin<\/span><\/span>(<\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span><\/span>\uff0c\u7b49\u4ef7\u4e8e\u5728\u4f20\u8f93\u590d\u4fe1\u53f7 s L ( t ) = x ( t ) + j y ( t ) s_L(t)=x(t)+jy(t) <\/span><\/span>s<\/span><\/span>L<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>(<\/span>t<\/span>)<\/span><\/span>=<\/span><\/span><\/span><\/span>x<\/span>(<\/span>t<\/span>)<\/span><\/span>+<\/span><\/span><\/span><\/span>j<\/span>y<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>
        \u4ece\u590d\u5e73\u9762\u4e0a\u770b\uff0cIQ\u8c03\u5236\u5c31\u662f\u7528\u300c\u5e45\u503c\u4e3a x ( t ) x(t) <\/span><\/span>x<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\u300d\u7684\u65cb\u8f6c\u5411\u91cf \u548c \u300c\u5e45\u503c\u4e3a y ( t ) y(t) <\/span><\/span>y<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\u300d\u7684\u65cb\u8f6c\u5411\u91cf \u5408\u6210\u4e00\u4e2a\u65cb\u8f6c\u5411\u91cf<\/mark>\uff08\u5b83\u7684\u5b9e\u8f74\u6295\u5f71\u4e3a x ( t ) x(t) <\/span><\/span>x<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\uff09\"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK
        \u4e3a\u4ec0\u4e48\u53ef\u4ee5\u7528IQ\u8c03\u5236\u7b49\u6548\u5b9e\u73b0PSK\u8c03\u5236<\/strong>\uff1a
        \u5f53\u8fd9\u91cc\u7684 x ( t ) x(t) <\/span><\/span>x<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\u548c y ( t ) y(t) <\/span><\/span>y<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\u90fd\u662f\u5e38\u6570\uff0c\u610f\u5473\u7740\u65cb\u8f6c\u8fc7\u7a0b\u4e2d\uff0c\u4e09\u4e2a\u65cb\u8f6c\u5411\u91cf\u7684\u5e45\u503c\u4e0d\u4f1a\u53d8\u5316<\/strong>\uff08\u5b83\u7684\u5b9e\u8f74\u6295\u5f71\u5c31\u662f\u4e00\u4e2a\u6b63\u5f26\u6ce2\uff09
        \u56e0\u6b64\uff0cI\u8def\u548cQ\u8def\u4fe1\u53f7\u7684\uff08\u5e38\u6570\uff09\u6570\u503c\u552f\u4e00\u786e\u5b9a<\/strong>\uff08\u7531IQ\u8c03\u5236\u5f97\u5230\u7684\uff09\u6b63\u5f26\u8f7d\u6ce2 cos \u2061 ( \u03c9 c t + \u03c6 ) \\cos \\left(\\omega_{\\mathrm{c}} t+\\varphi \\right) <\/span><\/span>cos<\/span><\/span>(<\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span>\u03c6<\/span>)<\/span><\/span><\/span><\/span><\/span><\/span>\u7684\u5e45\u503c\u548c\u521d\u76f8<\/strong> \u03c6 \\varphi <\/span><\/span>\u03c6<\/span><\/span><\/span><\/span><\/span><\/mark>
        \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK<\/p>\n<\/blockquote>\n

        \u5c06IQ\u4e24\u8def\u7684\u6570\u503c\u5bf9\u5e94\u5230\u590d\u5e73\u9762\u4e0a\u7684\u70b9\uff0c\u5c31\u5f97\u5230\u661f\u5ea7\u56fe<\/strong>\uff0c\u4ed6\u5b8c\u6574\u6e05\u6670\u7684\u7ed9\u51fa\u4e86IQ\u8c03\u5236\u7684\u6620\u5c04\u5173\u7cfb<\/mark>\uff0c\u4e5f\u5373\u5305\u542b\u4e86\u300c\u8f93\u5165\u7684\u6bd4\u7279\u6570\u636e\u3001\u8f7d\u6ce2\u5e45\u5ea6\u76f8\u4f4d\u3001\u8c03\u5236\u6240\u9700\u7684IQ\u6570\u636e\u300d\u4e09\u8005\u7684\u6620\u5c04\u5173\u7cfb<\/p>\n

        \u56e0\u6b64\uff0c\u4e00\u4e2a\u661f\u5ea7\u56fe\u5c31\u80fd\u5b8c\u5168\u4ee3\u8868\u4e00\u4e2a\u6570\u5b57\u8c03\u5236\u8fc7\u7a0b\uff0c\u6545\u6570\u5b57\u8c03\u5236\u4e5f\u79f0\u201c\u661f\u5ea7\u8c03\u5236<\/strong>\u201d
        \u4e0b\u56fe\u600e\u4e48\u770b\uff1a\u4e00\u4e2aIQ\u4e24\u8def\u5b9e\u6b63\u5f26\u4fe1\u53f7\uff0c\u5bf9\u5e94\u7740\u4e00\u4e2a\u590d\u4fe1\u53f7\uff0c\u5b83\u5728\u590d\u5e73\u9762\u4e0a\u7684\u7279\u5b9a\u534a\u5f84\u7684\u5706\u4e0a\u8fd0\u52a8\uff0c\u5176\u521d\u76f8\u5bf9\u5e94\u4e86\u661f\u5ea7\u56fe\u4e0a\u7684\u4e00\u4e2a\u70b9
        \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK<\/p>\n

        \n

        \u6ce8\u610f\uff0c\u661f\u5ea7\u56fe\u4e0a\u70b9\u7684\u5750\u6807\u4e0d\u662f\u968f\u610f\u53d6\u7684\uff0c\u539f\u5219\u662f\u5e73\u5747\u529f\u7387\u5f52\u4e00\u5316<\/strong>
        \u4f8b\u5982 16QAM\uff0c\u5e94\u4fdd\u8bc116\u4e2a\u661f\u5ea7\u70b9\u5230\u539f\u70b9\u8ddd\u79bb\u7684\u5747\u65b9\u6839RMS\u4e3a1\uff1a 1 16 \u2211 i = 1 16 ( I i 2 + Q i 2 ) = 1 16 ( 4 \u00d7 2 A 2 + 8 \u00d7 10 A 2 + 4 \u00d7 18 A 2 ) = 1 \\sqrt{\\frac{1}{16} \\sum_{i=1}^{16}\\left(I_{i}^{2}+Q_{i}^{2}\\right)}=\\sqrt{\\frac{1}{16}\\left(4 \\times 2A^2+8 \\times 10A^2+4 \\times 18A^2\\right)}=1 <\/span><\/span><\/span><\/span><\/span>16<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>1<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u2211<\/span><\/span>i<\/span>=<\/span>1<\/span><\/span><\/span><\/span><\/span>16<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>(<\/span>I<\/span><\/span>i<\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>+<\/span><\/span>Q<\/span><\/span>i<\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span><\/span>
        \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span><\/span><\/span><\/span>16<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>1<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>(<\/span>4<\/span><\/span>\u00d7<\/span><\/span>2<\/span>A<\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>+<\/span><\/span>8<\/span><\/span>\u00d7<\/span><\/span>10<\/span>A<\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>+<\/span><\/span>4<\/span><\/span>\u00d7<\/span><\/span>18<\/span>A<\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span><\/span>
        \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span>1<\/span><\/span><\/span><\/span><\/span>\uff0c\u56e0\u6b64\u56fe\u4e2d\u53d6 A = 1 1 0 A=\\frac{1}{\\sqrt 10} <\/span><\/span>A<\/span><\/span>=<\/span><\/span><\/span><\/span><\/span><\/span><\/span>1<\/span><\/span><\/span>
        \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span>0<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>1<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/p>\n<\/blockquote>\n

        \u6839\u636e\u661f\u5ea7\u56fe\uff0c\u663e\u7136\u4fe1\u53f7\u53d7\u5e72\u6270\u540e\uff0c\u63a5\u6536\u7aef\u8bef\u5224\u4e3a\u76f8\u90bb\u661f\u5ea7\u70b9\u7684\u6982\u7387\u66f4\u5927\uff0c\u56e0\u6b64\u4e00\u822c\u7ed3\u5408\u683c\u96f7\u7801<\/strong>\uff0c\u76f8\u90bb\u4e24\u4e2a\u661f\u5ea7\u70b9\uff08\u5bf9\u5e94\u7684\u591a\u5143\u7801\u5143\uff09\u4e4b\u95f4\u53ea\u67091\u4f4d\u6bd4\u7279\u4e0d\u540c\uff0c\u4ece\u800c\u8bef\u6bd4\u7279\u7387\u51cf\u5c0f<\/strong><\/p>\n

        \u7528IQ\u8c03\u5236\u5b9e\u73b0PSK\/QAM\u8c03\u5236<\/h4>\n

        \u4e0b\u9762\u4ee5QPSK\u4e3a\u4f8b\u4ecb\u7ecd\uff08Q\u4ee3\u88684\u5143\u8c03\u5236\uff0c\u5373\u6bcf\u6b21\u8f93\u51652\u4e2a\u6bd4\u7279\uff0c\u5bf9\u5e944\u79cd\u4e0d\u540c\u7684\u6ce2\u5f62\uff09<\/p>\n

        \n

        QPSK\u5c31\u662f\u7528\u6570\u5b57\u5e8f\u5217\u6765\u8c03\u5236\u6b63\u5f26\u8f7d\u6ce2\u7684\u76f8\u4f4d\uff08\u521d\u76f8\uff09<\/strong>
        PSK\u7b49\u6548\u4e8e\u505aIQ\u8c03\u5236<\/strong>\uff0c\u53ea\u4e0d\u8fc7\u6b64\u65f6\u7684I\u8def\u548cQ\u8def\u4fe1\u53f7<\/strong>\u90fd\u662f\u4e24\u4e2a\u5e45\u503c\u6052\u5b9a<\/strong>\u7684\u6ce2\u5f62<\/mark>
        \u8f93\u5165\u6bd4\u7279-\u8f93\u51fa\u6ce2\u5f62-\u7b49\u4ef7IQ\u8c03\u5236\u8f93\u51fa\u5173\u7cfb\u5982\u4e0b\uff1a<\/p>\n

          \n
        • 00\u5bf9\u5e94\u7684\u5df2\u8c03\u4fe1\u53f7\u4e3a cos \u2061 ( \u03c9 c t + \u03c0 4 ) = 2 2 cos \u2061 \u03c9 c t \u2212 2 2 sin \u2061 \u03c9 c t \\cos \\left(\\omega_{\\mathrm{c}} t+\\frac{\\pi}{4}\\right)=\\frac{\\sqrt{2}}{2} \\cos \\omega_{\\mathrm{c}} t-\\frac{\\sqrt{2}}{2} \\sin \\omega_{\\mathrm{c}} t <\/span><\/span>cos<\/span><\/span>(<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span><\/span><\/span>4<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u03c0<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>cos<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>\u2212<\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>sin<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span><\/span><\/span><\/span><\/li>\n
        • 01\u5bf9\u5e94\u7684\u5df2\u8c03\u4fe1\u53f7\u4e3a cos \u2061 ( \u03c9 c t + 3 \u03c0 4 ) = \u2212 2 2 cos \u2061 \u03c9 c t \u2212 2 2 sin \u2061 \u03c9 c t \\cos \\left(\\omega_{\\mathrm{c}} t+\\frac{3\\pi}{4}\\right)=-\\frac{\\sqrt{2}}{2} \\cos \\omega_{\\mathrm{c}} t-\\frac{\\sqrt{2}}{2} \\sin \\omega_{\\mathrm{c}} t <\/span><\/span>cos<\/span><\/span>(<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span><\/span><\/span>4<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>3<\/span>\u03c0<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span>\u2212<\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>cos<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>\u2212<\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>sin<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span><\/span><\/span><\/span><\/li>\n
        • 00\u5bf9\u5e94\u7684\u5df2\u8c03\u4fe1\u53f7\u4e3a cos \u2061 ( \u03c9 c t + 5 \u03c0 4 ) = \u2212 2 2 cos \u2061 \u03c9 c t + 2 2 sin \u2061 \u03c9 c t \\cos \\left(\\omega_{\\mathrm{c}} t+\\frac{5\\pi}{4}\\right)=-\\frac{\\sqrt{2}}{2} \\cos \\omega_{\\mathrm{c}} t+\\frac{\\sqrt{2}}{2} \\sin \\omega_{\\mathrm{c}} t <\/span><\/span>cos<\/span><\/span>(<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span><\/span><\/span>4<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>5<\/span>\u03c0<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span>\u2212<\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>cos<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>sin<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span><\/span><\/span><\/span><\/li>\n
        • 00\u5bf9\u5e94\u7684\u5df2\u8c03\u4fe1\u53f7\u4e3a cos \u2061 ( \u03c9 c t + 7 \u03c0 4 ) = 2 2 cos \u2061 \u03c9 c t + 2 2 sin \u2061 \u03c9 c t \\cos \\left(\\omega_{\\mathrm{c}} t+\\frac{7\\pi}{4}\\right)=\\frac{\\sqrt{2}}{2} \\cos \\omega_{\\mathrm{c}} t+\\frac{\\sqrt{2}}{2} \\sin \\omega_{\\mathrm{c}} t <\/span><\/span>cos<\/span><\/span>(<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span><\/span><\/span>4<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>7<\/span>\u03c0<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>cos<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span>+<\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>2<\/span><\/span><\/span><\/span>
          \n \n <\/path> \n <\/svg><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>sin<\/span><\/span>\u03c9<\/span><\/span>c<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>t<\/span><\/span><\/span><\/span><\/span>
          \u53ef\u89c1\uff0c
          \u7531\u6b64\uff0c\u4e0a\u9762\u7684\u8f93\u516501\u6bd4\u7279<\/strong>\uff0c\u4e0e\u8c03\u5236\u4fe1\u53f7\u7684\u521d\u76f8\u4e00\u4e00\u5bf9\u5e94<\/strong>\uff0c\u4e5f\u4e0e\u7b49\u6548IQ\u8c03\u5236\u7684I\u3001Q\u4e24\u8def\u6570\u636e\u4e00\u4e00\u5bf9\u5e94<\/strong>\uff0c\u5173\u7cfb\u5982\u4e0b
          \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK<\/li>\n<\/ul>\n<\/blockquote>\n

          \u7801\u5143\u4e0e\u8c03\u5236\u9636\u6570<\/h4>\n

          \u7801\u5143 \/ \u7b26\u53f7Symbol<\/strong>\uff1a\u5c31\u662f\u4fe1\u9053\u4e2d\u6301\u7eed\u56fa\u5b9a\u65f6\u95f4\uff08\u5373\u7801\u5143\u5468\u671f T s T_s <\/span><\/span>T<\/span><\/span>s<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\uff09\u7684\u3001\u5177\u6709\u7279\u5b9a\u5e45\u503c\/\u76f8\u4f4d\u7684\u4e00\u6bb5\u4f59\u5f26\u8f7d\u6ce2\u6ce2\u5f62<\/strong>
          QPSK\u8c03\u5236\u4e86\u6bcf\u6bb5\u4f59\u5f26\u6ce2\u7684\u76f8\u4f4d<\/strong>\uff08\u521d\u76f8\uff09\uff0c\u5176\u7801\u5143\u5982\u4e0b\uff1a
          \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK
          \u8c03\u5236\u9636\u6570<\/strong> \/ \u7801\u5143\u5143\u6570 M M <\/span><\/span>M<\/span><\/span><\/span><\/span><\/span>\uff1a\u8c03\u5236\u6240\u5f97\u7684\u4e0d\u540c\u7801\u5143\u79cd\u7c7b\u6570\uff08\u8c03\u5236\u9636\u6570 M M <\/span><\/span>M<\/span><\/span><\/span><\/span><\/span>\uff0c\u5219\u6bcf\u4e2a\u7801\u5143\u80fd\u627f\u8f7d l o b 2 M lob_2M <\/span><\/span>l<\/span>o<\/span>b<\/span><\/span>2<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>M<\/span><\/span><\/span><\/span><\/span>\u6bd4\u7279\u4fe1\u606f\uff09<\/p>\n

          \n

          \u4f8b\u5982\uff0cQPSK\uff0c\u8c03\u5236\u9636\u6570\u4e3a4\uff0c\u67094\u79cd\u53ef\u80fd\u7684\u7801\u5143\uff0c\u53734\u79cd\u4e0d\u540c\u76f8\u4f4d\u7684\u4f59\u5f26\u6ce2
          \u6ce8\u610f\uff0c\u4ece\u661f\u5ea7\u56fe\u4e0a\u53ef\u4ee5\u770b\u51fa\uff0c\u8c03\u5236\u9636\u6570\u589e\u52a0\uff0c\u661f\u5ea7\u70b9\u95f4\u8ddd\u53d8\u5c0f\uff0c\u6297\u5e72\u6270\u80fd\u529b\u53d8\u5dee\uff0c\u8981\u6c42\u66f4\u9ad8\u7684\u4fe1\u9053\u8d28\u91cf<\/p>\n<\/blockquote>\n

          \u7801\u5143\u901f\u7387 \/ \u6ce2\u7279\u7387 R s R_s <\/span><\/span>R<\/span><\/span>s<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\uff1a\u5355\u4f4d\u65f6\u95f4\u4f20\u8f93\u7684\u7801\u5143<\/strong>\u4e2a\u6570
          \u6bd4\u7279\u901f\u7387 \/ \u4fe1\u606f\u4f20\u8f93\u901f\u7387 R b R_b <\/span><\/span>R<\/span><\/span>b<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\uff1a\u5355\u4f4d\u65f6\u95f4\u4f20\u8f93\u7684\u6bd4\u7279<\/strong>\u6570\uff08\u4e00\u4e2a\u7801\u5143\u53ef\u4ee5\u627f\u8f7d\u591a\u4e2a\u6bd4\u7279\uff09, R b = l o b 2 M R s R_b=lob_2MR_s <\/span><\/span>R<\/span><\/span>b<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>=<\/span><\/span><\/span><\/span>l<\/span>o<\/span>b<\/span><\/span>2<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>M<\/span>R<\/span><\/span>s<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/p>\n

          \u6570\u5b57\u8c03\u5236\u5177\u4f53\u5b9e\u73b0\u6d41\u7a0b<\/h3>\n

          \u4e0a\u9762\u8bf4\u8fc7\uff0c\u6570\u5b57\u8c03\u5236\u7684\u6838\u5fc3\u5c31\u662fIQ\u8c03\u5236\uff1b
          \u5b9e\u9645\u4e2d\uff0c\u6570\u5b57\u8c03\u5236\u7684\u5177\u4f53\u5b9e\u73b0\u65b9\u6cd5\u5206\u4e3a\u4e09\u6b65\uff1a\u6bd4\u7279\u6620\u5c04\uff08\u8fd9\u4e00\u6b65\u662fIQ\u8c03\u5236\u5e26\u6765\u7684\uff09\u3001\u8109\u51b2\u6210\u5f62\u3001\u4e0a\u53d8\u9891<\/mark>
          \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK<\/p>\n

            \n
          1. \u6bd4\u7279\u6620\u5c04<\/strong><\/mark>\uff1a\u6bd4\u7279 b k b_k <\/span><\/span>b<\/span><\/span>k<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u6620\u5c04\u5230\u7b26\u53f7 I n I_n <\/span><\/span>I<\/span><\/span>n<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\uff08\u4e00\u4e2a\u590d\u6570\uff0c\u5373IQ\u8c03\u5236\u7684\u590d\u6570<\/strong>\u661f\u5ea7\u70b9\uff0c\u5373IQ\u4e24\u8def\u5b9e\u4fe1\u53f7\uff09<\/mark>\uff0c\u7b26\u53f7\u53ef\u4ee5\u53d6 M M <\/span><\/span>M<\/span><\/span><\/span><\/span><\/span>\u79cd\u79bb\u6563\u503c\uff0c\u79f0\u4e3a M M <\/span><\/span>M<\/span><\/span><\/span><\/span><\/span>\u5143\u7684\uff0c\u4e00\u4e2a\u591a\u5143\u7b26\u53f7\u627f\u8f7d\u591a\u4e2a\u6bd4\u7279\uff1b
            \u4e00\u7cfb\u5217\u7b26\u53f7\u7ec4\u6210\u4e86\u4e00\u4e2a\u51b2\u6fc0\u51fd\u6570\u5e8f\u5217 I ( t ) = \u2211 n = \u2212 \u221e \u221e I n \u03b4 ( t \u2212 n T s ) I(t)=\\sum_{n=-\\infty}^{\\infty}I_n\\delta(t-nT_s) <\/span><\/span>I<\/span>(<\/span>t<\/span>)<\/span><\/span>=<\/span><\/span><\/span><\/span>\u2211<\/span><\/span>n<\/span>=<\/span>\u2212<\/span>\u221e<\/span><\/span><\/span><\/span><\/span>\u221e<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>I<\/span><\/span>n<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>\u03b4<\/span>(<\/span>t<\/span><\/span>\u2212<\/span><\/span><\/span><\/span>n<\/span>T<\/span><\/span>s<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span><\/span><\/li>\n
          2. \u8109\u51b2\u6210\u5f62<\/strong><\/mark>\uff1a\u7b26\u53f7\u5e8f\u5217\u7ecf\u8fc7\u6210\u5f62\u6ee4\u6ce2\u5668<\/strong> g ( t ) g(t) <\/span><\/span>g<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\uff0c\u6bcf\u4e2a\u7b26\u53f7\u5bf9\u5e94\u4ea7\u751f\u67d0\u79cd\u6ce2\u5f62\uff0c\u6240\u6709\u6ce2\u5f62\u6309\u65f6\u95f4\u53e0\u52a0\u5f97\u5230\u57fa\u5e26\u4fe1\u53f7 s ( t ) = I ( t ) \u2217 g ( t ) = \u2211 n = \u2212 \u221e \u221e I n g ( t \u2212 n T s ) s(t)=I(t)*g(t)=\\sum_{n=-\\infty}^{\\infty}I_ng(t-nT_s) <\/span><\/span>s<\/span>(<\/span>t<\/span>)<\/span><\/span>=<\/span><\/span><\/span><\/span>I<\/span>(<\/span>t<\/span>)<\/span><\/span>\u2217<\/span><\/span><\/span><\/span>g<\/span>(<\/span>t<\/span>)<\/span><\/span>=<\/span><\/span><\/span><\/span><\/span>n<\/span>=<\/span>\u2212<\/span>\u221e<\/span><\/span><\/span><\/span><\/span>\u2211<\/span><\/span><\/span><\/span>\u221e<\/span><\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>I<\/span><\/span>n<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>g<\/span>(<\/span>t<\/span><\/span>\u2212<\/span><\/span><\/span><\/span>n<\/span>T<\/span><\/span>s<\/span><\/span><\/span><\/span>\u200b<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span>)<\/span><\/span><\/span><\/span><\/span><\/span><\/li>\n
          3. \u4e0a\u53d8\u9891<\/mark>\uff1a\u5c06\u57fa\u5e26\u4fe1\u53f7 s ( t ) s(t) <\/span><\/span>s<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\u642c\u79fb\u81f3\u8f7d\u6ce2\uff0c\u8fd9\u90e8\u5206\u548c\u6a21\u62df\u8c03\u5236\u7c7b\u4f3c<\/strong>\uff08\u90fd\u662f\u7528\u8f7d\u6ce2\u4f20\u8f93\u57fa\u5e26\u6ce2\u5f62\uff09
            \u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u4f20\u8f93\u590d\u4fe1\u53f7 s ( t ) s(t) <\/span><\/span>s<\/span>(<\/span>t<\/span>)<\/span><\/span><\/span><\/span><\/span>\uff08\u5373\u661f\u5ea7\u70b9\uff09\uff0c\u56e0\u6b64\u8fd9\u90e8\u5206\u7684\u5b9e\u73b0\u4e3aIQ\u8c03\u5236<\/strong>\uff08\u7528\u5b9e\u4fe1\u53f7\u4f20\u8f93\u590d\u4fe1\u53f7\uff0c\u4e14\u9690\u542b\u5730\u5b8c\u6210\u4e86\u4e0a\u53d8\u9891\u6b65\u9aa4\uff09<\/mark><\/li>\n<\/ol>\n

            \u6570\u5b57\u8c03\u5236\u601d\u8def\u4e0e\u6a21\u62df\u8c03\u5236\u76f8\u540c\uff0c\u5c31\u662f\u7528\u8981\u4f20\u8f93\u7684\u6570\u5b57\u4fe1\u53f7\uff0c\u6765\u63a7\u5236\u9ad8\u9891\u8f7d\u6ce2<\/strong>\u7684\u5e45\u5ea6\/\u9891\u7387\/\u76f8\u4f4d<\/strong>\uff0c\u5bf9\u5e94ASK\/FSK\/PSK\uff1b\u53e6\u5916\uff0c\u8fd8\u6709\u8054\u5408\u8c03\u5236\u8f7d\u6ce2\u5e45\u5ea6\u548c\u76f8\u4f4d\u7684QAM<\/p>\n

            \u4e3e\u4f8b\uff1a<\/p>\n

              \n
            • \u8981\u83b7\u5f97\u4e4b\u524d\u6240\u8ff0\u7684\u201cIQ\u4e24\u8def\u7684\u5e38\u6570\u6570\u503c\u201d\uff0c\u7406\u8bba\u4e0a\u9700\u8981\u77e9\u5f62\u8109\u51b2<\/strong>\u4f5c\u4e3a\u6210\u5f62\u6ee4\u6ce2\u5668<\/strong>\uff0c\u5f97\u5230\u7684\u5c04\u9891\u4fe1\u53f7\u662f\u6052\u5305\u7edc\u7684<\/mark>
              \u7f3a\u70b9\u662f\uff1a\u57fa\u5e26\u4fe1\u53f7\u7684\u4e24\u4e2a\u7b26\u53f7\u4e4b\u95f4\u7531\u8df3\u53d8\uff0c\u4ece\u800c\u5f15\u53d1\u5e26\u5916\u6cc4\u9732\uff1b
              \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK<\/li>\n
            • \u82e5\u6210\u5f62\u6ee4\u6ce2\u5668\u4f7f\u7528 \u03b1 = 0 , 5 \\alpha=0,5 <\/span><\/span>\u03b1<\/span><\/span>=<\/span><\/span><\/span><\/span>0<\/span>,<\/span><\/span>5<\/span><\/span><\/span><\/span><\/span>\u7684\u5347\u4f59\u5f26\u6eda\u964d\u6ee4\u6ce2\u5668<\/strong>\uff0c\u65f6\u57df\u4e0a\u6d88\u9664\u4e86\u57fa\u5e26\u4fe1\u53f7\u7684\u8df3\u53d8\uff0c\u9891\u57df\u4e0a\u9650\u5236\u4e86\u5e26\u5916\u6cc4\u9732\uff08\u4fe1\u53f7\u80fd\u91cf\u9650\u5236\u5728\u4e00\u5b9a\u9891\u5e26\u5185\uff09<\/mark>
              \u7f3a\u70b9\u662f\uff1a\u5c04\u9891\u4fe1\u53f7\u4e0d\u662f\u6052\u5305\u7edc\u7684
              \"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK<\/li>\n<\/ul>\n","protected":false},"excerpt":{"rendered":"\u901a\u4fe1\u539f\u7406\u5b66\u4e60\u7b14\u8bb03-3\uff1a\u6570\u5b57\u901a\u4fe1\u7cfb\u7edf\u6982\u8ff0\uff08\u6570\u5b57\u8c03\u5236\u3001IQ\u8c03\u5236\u4e0ePSK \/ QAM\uff09\u6ce8\u610f\uff0c\u4ece\u661f\u5ea7\u56fe\u4e0a\u53ef\u4ee5\u770b\u51fa\uff0c\u8c03\u5236\u9636\u6570\u589e\u52a0\uff0c\u661f\u5ea7\u70b9\u95f4...","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[],"tags":[],"_links":{"self":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts\/8611"}],"collection":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/comments?post=8611"}],"version-history":[{"count":0,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts\/8611\/revisions"}],"wp:attachment":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/media?parent=8611"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/categories?post=8611"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/tags?post=8611"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}