{"id":9001,"date":"2024-05-17T17:01:01","date_gmt":"2024-05-17T09:01:01","guid":{"rendered":""},"modified":"2024-05-17T17:01:01","modified_gmt":"2024-05-17T09:01:01","slug":"LeetCode-\u9898\u76ee\u8be6\u89e3\uff1a\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3001\u5e7f\u5ea6\u4f18\u5148\u904d\u5386","status":"publish","type":"post","link":"https:\/\/mushiming.com\/9001.html","title":{"rendered":"LeetCode-\u9898\u76ee\u8be6\u89e3\uff1a\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3001\u5e7f\u5ea6\u4f18\u5148\u904d\u5386"},"content":{"rendered":"

\n <\/path> \n<\/svg> <\/p>\n

\u4e00\u3001\u9ad8\u9891\u9898<\/h2>\n

1\u3001\u9ad8\u9891\u9898<\/h3>\n

1.1\u3001105-\u4ece\u524d\u5e8f\u4e0e\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u6784\u9020\u4e8c\u53c9\u6811<\/h4>\n

\u6839\u636e\u4e00\u68f5\u6811\u7684\u524d\u5e8f\u904d\u5386\u4e0e\u4e2d\u5e8f\u904d\u5386\u6784\u9020\u4e8c\u53c9\u6811\u3002<\/p>\n

\u6ce8\u610f\uff1a\u4f60\u53ef\u4ee5\u5047\u8bbe\u6811\u4e2d\u6ca1\u6709\u91cd\u590d\u7684\u5143\u7d20\u3002<\/p>\n

\u4f8b\u5982\uff0c\u7ed9\u51fa<\/p>\n

\u524d\u5e8f\u904d\u5386 preorder = [3,9,20,15,7]\n\u4e2d\u5e8f\u904d\u5386 inorder = [9,3,15,20,7]\n<\/code><\/pre>\n

\u8fd4\u56de\u5982\u4e0b\u7684\u4e8c\u53c9\u6811\uff1a<\/p>\n

    3\n   \/ \\\n  9  20\n    \/  \\\n   15   7\n<\/code><\/pre>\n
\n

\u65b9\u6cd5\u4e00\uff1a\u9012\u5f52\u3010O(n)\uff0c\u5176\u4e2d n \u662f\u6811\u4e2d\u7684\u8282\u70b9\u4e2a\u6570\u3011<\/p>\n

class<\/span> Solution<\/span>:<\/span>\n    def<\/span> buildTree<\/span>(<\/span>self,<\/span> preorder:<\/span> List[<\/span>int<\/span>]<\/span>,<\/span> inorder:<\/span> List[<\/span>int<\/span>]<\/span>)<\/span> -<\/span>><\/span> TreeNode:<\/span>\n        def<\/span> myBuildTree<\/span>(<\/span>preorder_left:<\/span> int<\/span>,<\/span> preorder_right:<\/span> int<\/span>,<\/span> inorder_left:<\/span> int<\/span>,<\/span> inorder_right:<\/span> int<\/span>)<\/span>:<\/span>\n            if<\/span> preorder_left ><\/span> preorder_right:<\/span>\n                return<\/span> None<\/span>\n            \n            # \u524d\u5e8f\u904d\u5386\u4e2d\u7684\u7b2c\u4e00\u4e2a\u8282\u70b9\u5c31\u662f\u6839\u8282\u70b9<\/span>\n            preorder_root =<\/span> preorder_left\n            # \u5728\u4e2d\u5e8f\u904d\u5386\u4e2d\u5b9a\u4f4d\u6839\u8282\u70b9<\/span>\n            inorder_root =<\/span> index[<\/span>preorder[<\/span>preorder_root]<\/span>]<\/span>\n            \n            # \u5148\u628a\u6839\u8282\u70b9\u5efa\u7acb\u51fa\u6765<\/span>\n            root =<\/span> TreeNode(<\/span>preorder[<\/span>preorder_root]<\/span>)<\/span>\n            # \u5f97\u5230\u5de6\u5b50\u6811\u4e2d\u7684\u8282\u70b9\u6570\u76ee<\/span>\n            size_left_subtree =<\/span> inorder_root -<\/span> inorder_left\n            # \u9012\u5f52\u5730\u6784\u9020\u5de6\u5b50\u6811\uff0c\u5e76\u8fde\u63a5\u5230\u6839\u8282\u70b9<\/span>\n            # \u5148\u5e8f\u904d\u5386\u4e2d\u300c\u4ece \u5de6\u8fb9\u754c+1 \u5f00\u59cb\u7684 size_left_subtree\u300d\u4e2a\u5143\u7d20\u5c31\u5bf9\u5e94\u4e86\u4e2d\u5e8f\u904d\u5386\u4e2d\u300c\u4ece \u5de6\u8fb9\u754c \u5f00\u59cb\u5230 \u6839\u8282\u70b9\u5b9a\u4f4d-1\u300d\u7684\u5143\u7d20<\/span>\n            root.<\/span>left =<\/span> myBuildTree(<\/span>preorder_left +<\/span> 1<\/span>,<\/span> preorder_left +<\/span> size_left_subtree,<\/span> inorder_left,<\/span> inorder_root -<\/span> 1<\/span>)<\/span>\n            # \u9012\u5f52\u5730\u6784\u9020\u53f3\u5b50\u6811\uff0c\u5e76\u8fde\u63a5\u5230\u6839\u8282\u70b9<\/span>\n            # \u5148\u5e8f\u904d\u5386\u4e2d\u300c\u4ece \u5de6\u8fb9\u754c+1+\u5de6\u5b50\u6811\u8282\u70b9\u6570\u76ee \u5f00\u59cb\u5230 \u53f3\u8fb9\u754c\u300d\u7684\u5143\u7d20\u5c31\u5bf9\u5e94\u4e86\u4e2d\u5e8f\u904d\u5386\u4e2d\u300c\u4ece \u6839\u8282\u70b9\u5b9a\u4f4d+1 \u5230 \u53f3\u8fb9\u754c\u300d\u7684\u5143\u7d20<\/span>\n            root.<\/span>right =<\/span> myBuildTree(<\/span>preorder_left +<\/span> size_left_subtree +<\/span> 1<\/span>,<\/span> preorder_right,<\/span> inorder_root +<\/span> 1<\/span>,<\/span> inorder_right)<\/span>\n            return<\/span> root\n        \n        n =<\/span> len<\/span>(<\/span>preorder)<\/span>\n        # \u6784\u9020\u54c8\u5e0c\u6620\u5c04\uff0c\u5e2e\u52a9\u6211\u4eec\u5feb\u901f\u5b9a\u4f4d\u6839\u8282\u70b9<\/span>\n        index =<\/span> { \n   <\/span>element:<\/span> i for<\/span> i,<\/span> element in<\/span> enumerate<\/span>(<\/span>inorder)<\/span>}<\/span>\n        return<\/span> myBuildTree(<\/span>0<\/span>,<\/span> n -<\/span> 1<\/span>,<\/span> 0<\/span>,<\/span> n -<\/span> 1<\/span>)<\/span>\n<\/code><\/pre>\n

\u65b9\u6cd5\u4e8c\uff1a\u9012\u5f52<\/p>\n

1.\u89c4\u5f8b<\/p>\n

\u524d\u5e8f\uff1a\uff08root.val\uff09[\u5de6\u5b50\u6811\u7684\u7ed3\u70b9\u7684\u6570\u503c\u4eec\uff0c\u957f\u5ea6\u4e3aleft_len] [\u53f3\u5b50\u6811\u7684\u7ed3\u70b9\u7684\u6570\u503c\u4eec\uff0c\u957f\u5ea6\u4e3aright_len]<\/p>\n

\u4e2d\u5e8f\uff1a[\u5de6\u5b50\u6811\u7684\u7ed3\u70b9\u7684\u6570\u503c\u4eec\uff0c\u957f\u5ea6\u4e3aleft_len] \uff08root.val\uff09[\u53f3\u5b50\u6811\u7684\u7ed3\u70b9\u7684\u6570\u503c\u4eec\uff0c\u957f\u5ea6\u4e3aright_len]<\/p>\n

idx = inorder.index(root.val) \u5c31\u662f\u5de6\u5b50\u6811\u7684\u7ed3\u70b9\u4e2a\u6570<\/p>\n

2.\u5207\u7247\u6bd4\u8f83\u597d\u7528\u3002\u7528\u6307\u9488\u5bb9\u6613\u601d\u7ef4\u641e\u4e71\uff0c\u4e14\u8fb9\u754c\u4e0d\u597d\u7ef4\u62a4<\/p>\n

# Definition for a binary tree node.<\/span>\n# class TreeNode:<\/span>\n# def __init__(self, val=0, left=None, right=None):<\/span>\n# self.val = val<\/span>\n# self.left = left<\/span>\n# self.right = right<\/span>\nclass<\/span> Solution<\/span>:<\/span>\n    def<\/span> buildTree<\/span>(<\/span>self,<\/span> preorder:<\/span> List[<\/span>int<\/span>]<\/span>,<\/span> inorder:<\/span> List[<\/span>int<\/span>]<\/span>)<\/span> -<\/span>><\/span> TreeNode:<\/span>\n        # \u9012\u5f52\u7ed3\u675f\u6761\u4ef6<\/span>\n        if<\/span> not<\/span> preorder:<\/span>\n            return<\/span> None<\/span>\n        root_val =<\/span> preorder[<\/span>0<\/span>]<\/span>\n        root_idx =<\/span> inorder.<\/span>index(<\/span>root_val)<\/span>\n        root =<\/span> TreeNode(<\/span>root_val)<\/span>\n\n        # \u524d\u5e8f\u904d\u5386\u4e2d\uff0c\u7d22\u5f15root_idx\u524d\u7684\u8282\u70b9\u4e3a\u6839+\u5de6\u5b50\u6811\uff0cpreorder[1: root_idx + 1]\u4e3a\u5de6\u5b50\u6811\u6570\u7ec4<\/span>\n        # \u4e2d\u5e8f\u904d\u5386\u4e2d\uff0c\u7d22\u5f15root_idx\u4e3a\u6839\u8282\u70b9\uff0cinorder[0: root_idx]\u4e3a\u5de6\u5b50\u6811\u6570\u7ec4<\/span>\n        root.<\/span>left =<\/span> self.<\/span>buildTree(<\/span>preorder[<\/span>1<\/span>:<\/span>root_idx +<\/span> 1<\/span>]<\/span>,<\/span> inorder[<\/span>0<\/span>:<\/span>root_idx]<\/span>)<\/span>\n\n        # \u7d22\u5f15root_idx\u540e\u7684\u8282\u70b9\u4e3a\u53f3\u5b50\u6811\u6240\u6709\u8282\u70b9\uff0cpreorder[root_idx + 1:]\u4e3a\u53f3\u5b50\u6811\u6570\u7ec4<\/span>\n        # \u4e2d\u5e8f\u904d\u5386\u4e2d\uff0c\u7d22\u5f15root_idx\u4e3a\u6839\u8282\u70b9\uff0cinorder[root_idx + 1: ]\u4e3a\u53f3\u5b50\u6811\u6570\u7ec4<\/span>\n        root.<\/span>right =<\/span> self.<\/span>buildTree(<\/span>preorder[<\/span>root_idx +<\/span> 1<\/span>:<\/span>]<\/span>,<\/span> inorder[<\/span>root_idx +<\/span> 1<\/span>:<\/span>]<\/span>)<\/span>\n        return<\/span> root\n<\/code><\/pre>\n

\u65b9\u6cd5\u4e09\uff1a\u8fed\u4ee3\u3010O(n)\uff0c\u5176\u4e2d n \u662f\u6811\u4e2d\u7684\u8282\u70b9\u4e2a\u6570\u3011<\/p>\n

class<\/span> Solution<\/span>:<\/span>\n    def<\/span> buildTree<\/span>(<\/span>self,<\/span> preorder:<\/span> List[<\/span>int<\/span>]<\/span>,<\/span> inorder:<\/span> List[<\/span>int<\/span>]<\/span>)<\/span> -<\/span>><\/span> TreeNode:<\/span>\n        if<\/span> not<\/span> preorder:<\/span>\n            return<\/span> None<\/span>\n\n        root =<\/span> TreeNode(<\/span>preorder[<\/span>0<\/span>]<\/span>)<\/span>\n        stack =<\/span> [<\/span>root]<\/span>\n        inorderIndex =<\/span> 0<\/span>\n        for<\/span> i in<\/span> range<\/span>(<\/span>1<\/span>,<\/span> len<\/span>(<\/span>preorder)<\/span>)<\/span>:<\/span>\n            preorderVal =<\/span> preorder[<\/span>i]<\/span>\n            node =<\/span> stack[<\/span>-<\/span>1<\/span>]<\/span>\n            if<\/span> node.<\/span>val !=<\/span> inorder[<\/span>inorderIndex]<\/span>:<\/span>\n                node.<\/span>left =<\/span> TreeNode(<\/span>preorderVal)<\/span>\n                stack.<\/span>append(<\/span>node.<\/span>left)<\/span>\n            else<\/span>:<\/span>\n                while<\/span> stack and<\/span> stack[<\/span>-<\/span>1<\/span>]<\/span>.<\/span>val ==<\/span> inorder[<\/span>inorderIndex]<\/span>:<\/span>\n                    node =<\/span> stack.<\/span>pop(<\/span>)<\/span>\n                    inorderIndex +=<\/span> 1<\/span>\n                node.<\/span>right =<\/span> TreeNode(<\/span>preorderVal)<\/span>\n                stack.<\/span>append(<\/span>node.<\/span>right)<\/span>\n\n        return<\/span> root\n\n\u4f5c\u8005\uff1aLeetCode-<\/span>Solution\n\u94fe\u63a5\uff1ahttps:<\/span>\/\/<\/span>leetcode-<\/span>cn.<\/span>com\/<\/span>problems\/<\/span>construct-<\/span>binary-<\/span>tree-<\/span>from<\/span>-<\/span>preorder-<\/span>and<\/span>-<\/span>inorder-<\/span>traversal\/<\/span>solution\/<\/span>cong-<\/span>qian-<\/span>xu-<\/span>yu-<\/span>zhong-<\/span>xu-<\/span>bian-<\/span>li-<\/span>xu-<\/span>lie-<\/span>gou-<\/span>zao-<\/span>9<\/span>\/<\/span>\n\u6765\u6e90\uff1a\u529b\u6263\uff08LeetCode\uff09\n\u8457\u4f5c\u6743\u5f52\u4f5c\u8005\u6240\u6709\u3002\u5546\u4e1a\u8f6c\u8f7d\u8bf7\u8054\u7cfb\u4f5c\u8005\u83b7\u5f97\u6388\u6743\uff0c\u975e\u5546\u4e1a\u8f6c\u8f7d\u8bf7\u6ce8\u660e\u51fa\u5904\u3002\n<\/code><\/pre>\n

1.2\u3001131-\u5206\u5272\u56de\u6587\u4e32<\/h4>\n

1.3\u3001200-\u5c9b\u5c7f\u6570\u91cf<\/h4>\n

1.4\u3001124-\u4e8c\u53c9\u6811\u4e2d\u7684\u6700\u5927\u8def\u5f84\u548c<\/h4>\n

1.5\u3001394-\u5b57\u7b26\u4e32\u89e3\u7801<\/h4>\n

1.6\u3001199-\u4e8c\u53c9\u6811\u7684\u53f3\u89c6\u56fe<\/h4>\n

1.7\u300117-\u7535\u8bdd\u53f7\u7801\u7684\u5b57\u6bcd\u7ec4\u5408<\/h4>\n

1.8\u3001104-\u4e8c\u53c9\u6811\u7684\u6700\u5927\u6df1\u5ea6<\/h4>\n

1.9\u3001101-\u5bf9\u79f0\u4e8c\u53c9\u6811<\/h4>\n

1.10\u3001679-24 \u70b9\u6e38\u620f<\/h4>\n

1.11\u300198-\u9a8c\u8bc1\u4e8c\u53c9\u641c\u7d22\u6811<\/h4>\n

1.12\u3001721-\u8d26\u6237\u5408\u5e76<\/h4>\n

1.13\u3001257-\u4e8c\u53c9\u6811\u7684\u6240\u6709\u8def\u5f84<\/h4>\n

1.14\u3001\u5251\u6307 Offer 34-\u4e8c\u53c9\u6811\u4e2d\u548c\u4e3a\u67d0\u4e00\u503c\u7684\u8def\u5f84<\/h4>\n

1.15\u3001547-\u7701\u4efd\u6570\u91cf<\/h4>\n

2\u3001\u4e2d\u9891\u9898<\/h3>\n

2.1\u3001494-\u76ee\u6807\u548c<\/h4>\n

2.2\u3001113-\u8def\u5f84\u603b\u548c II<\/h4>\n

2.3\u3001\u5251\u6307 Offer 55 - I-\u4e8c\u53c9\u6811\u7684\u6df1\u5ea6<\/h4>\n

2.4\u3001110-\u5e73\u8861\u4e8c\u53c9\u6811<\/h4>\n

2.5\u3001695-\u5c9b\u5c7f\u7684\u6700\u5927\u9762\u79ef<\/h4>\n

2.6\u3001130-\u88ab\u56f4\u7ed5\u7684\u533a\u57df<\/h4>\n

2.7\u3001207-\u8bfe\u7a0b\u8868<\/h4>\n

2.8\u3001106-\u4ece\u4e2d\u5e8f\u4e0e\u540e\u5e8f\u904d\u5386\u5e8f\u5217\u6784\u9020\u4e8c\u53c9\u6811<\/h4>\n

2.9\u30011631-\u6700\u5c0f\u4f53\u529b\u6d88\u8017\u8def\u5f84<\/h4>\n

2.10\u3001108-\u5c06\u6709\u5e8f\u6570\u7ec4\u8f6c\u6362\u4e3a\u4e8c\u53c9\u641c\u7d22\u6811<\/h4>\n

2.11\u3001112-\u8def\u5f84\u603b\u548c<\/h4>\n

2.12\u3001100-\u76f8\u540c\u7684\u6811<\/h4>\n

2.13\u3001129-\u6c42\u6839\u8282\u70b9\u5230\u53f6\u8282\u70b9\u6570\u5b57\u4e4b\u548c<\/h4>\n

2.14\u3001\u9762\u8bd5\u9898 16.19-\u6c34\u57df\u5927\u5c0f<\/h4>\n

2.15\u3001\u5251\u6307 Offer 12-\u77e9\u9635\u4e2d\u7684\u8def\u5f84<\/h4>\n

2.16\u300199-\u6062\u590d\u4e8c\u53c9\u641c\u7d22\u6811<\/h4>\n

2.17\u3001337-\u6253\u5bb6\u52ab\u820d III<\/h4>\n

2.18\u3001329-\u77e9\u9635\u4e2d\u7684\u6700\u957f\u9012\u589e\u8def\u5f84<\/h4>\n

2.19\u3001\u5251\u6307 Offer 55 - II-\u5e73\u8861\u4e8c\u53c9\u6811<\/h4>\n

2.20\u3001114-\u4e8c\u53c9\u6811\u5c55\u5f00\u4e3a\u94fe\u8868<\/h4>\n

2.21\u3001417-\u592a\u5e73\u6d0b\u5927\u897f\u6d0b\u6c34\u6d41\u95ee\u9898<\/h4>\n

2.22\u3001\u9762\u8bd5\u9898 04.05-\u5408\u6cd5\u4e8c\u53c9\u641c\u7d22\u6811<\/h4>\n

2.23\u3001514-\u81ea\u7531\u4e4b\u8def<\/h4>\n

2.24\u30011319-\u8fde\u901a\u7f51\u7edc\u7684\u64cd\u4f5c\u6b21\u6570<\/h4>\n

2.25\u3001111-\u4e8c\u53c9\u6811\u7684\u6700\u5c0f\u6df1\u5ea6<\/h4>\n

2.26\u3001301-\u5220\u9664\u65e0\u6548\u7684\u62ec\u53f7<\/h4>\n

2.27\u3001491-\u9012\u589e\u5b50\u5e8f\u5217<\/h4>\n

2.28\u3001959-\u7531\u659c\u6760\u5212\u5206\u533a\u57df<\/h4>\n

2.29\u3001\u9762\u8bd5\u9898 04.02-\u6700\u5c0f\u9ad8\u5ea6\u6811<\/h4>\n

2.30\u3001934-\u6700\u77ed\u7684\u6865<\/h4>\n

2.31\u3001210-\u8bfe\u7a0b\u8868 II<\/h4>\n

2.32\u30011203-\u9879\u76ee\u7ba1\u7406<\/h4>\n

2.33\u3001332-\u91cd\u65b0\u5b89\u6392\u884c\u7a0b<\/h4>\n

2.34\u3001\u9762\u8bd5\u9898 17.22-\u5355\u8bcd\u8f6c\u6362<\/h4>\n

2.35\u3001987-\u4e8c\u53c9\u6811\u7684\u5782\u5e8f\u904d\u5386<\/h4>\n

2.36\u3001109-\u6709\u5e8f\u94fe\u8868\u8f6c\u6362\u4e8c\u53c9\u641c\u7d22\u6811<\/h4>\n

2.37\u3001116-\u586b\u5145\u6bcf\u4e2a\u8282\u70b9\u7684\u4e0b\u4e00\u4e2a\u53f3\u4fa7\u8282\u70b9\u6307\u9488<\/h4>\n

2.38\u3001947-\u79fb\u9664\u6700\u591a\u7684\u540c\u884c\u6216\u540c\u5217\u77f3\u5934<\/h4>\n

2.39\u3001743-\u7f51\u7edc\u5ef6\u8fdf\u65f6\u95f4<\/h4>\n

2.40\u3001515-\u5728\u6bcf\u4e2a\u6811\u884c\u4e2d\u627e\u6700\u5927\u503c<\/h4>\n

2.41\u3001538-\u628a\u4e8c\u53c9\u641c\u7d22\u6811\u8f6c\u6362\u4e3a\u7d2f\u52a0\u6811<\/h4>\n

2.42\u3001685-\u5197\u4f59\u8fde\u63a5 II<\/h4>\n

2.43\u3001839-\u76f8\u4f3c\u5b57\u7b26\u4e32\u7ec4<\/h4>\n

2.44\u3001785-\u5224\u65ad\u4e8c\u5206\u56fe<\/h4>\n

2.45\u3001783-\u4e8c\u53c9\u641c\u7d22\u6811\u8282\u70b9\u6700\u5c0f\u8ddd\u79bb<\/h4>\n

2.46\u30011489-\u627e\u5230\u6700\u5c0f\u751f\u6210\u6811\u91cc\u7684\u5173\u952e\u8fb9\u548c\u4f2a\u5173\u952e\u8fb9<\/h4>\n

2.47\u3001968-\u76d1\u63a7\u4e8c\u53c9\u6811<\/h4>\n

2.48\u30011145-\u4e8c\u53c9\u6811\u7740\u8272\u6e38\u620f<\/h4>\n

2.49\u3001\u9762\u8bd5\u9898 17.07-\u5a74\u513f\u540d\u5b57<\/h4>\n

2.50\u3001778-\u6c34\u4f4d\u4e0a\u5347\u7684\u6cf3\u6c60\u4e2d\u6e38\u6cf3<\/h4>\n

2.51\u3001863-\u4e8c\u53c9\u6811\u4e2d\u6240\u6709\u8ddd\u79bb\u4e3a K \u7684\u7ed3\u70b9<\/h4>\n

2.52\u3001563-\u4e8c\u53c9\u6811\u7684\u5761\u5ea6<\/h4>\n

2.53\u3001\u9762\u8bd5\u9898 04.04-\u68c0\u67e5\u5e73\u8861\u6027<\/h4>\n

2.54\u3001690-\u5458\u5de5\u7684\u91cd\u8981\u6027<\/h4>\n

2.55\u3001430-\u6241\u5e73\u5316\u591a\u7ea7\u53cc\u5411\u94fe\u8868<\/h4>\n

2.56\u3001827-\u6700\u5927\u4eba\u5de5\u5c9b<\/h4>\n

2.57\u3001897-\u9012\u589e\u987a\u5e8f\u641c\u7d22\u6811<\/h4>\n

2.58\u30011530-\u597d\u53f6\u5b50\u8282\u70b9\u5bf9\u7684\u6570\u91cf<\/h4>\n

2.59\u30011559-\u4e8c\u7ef4\u7f51\u683c\u56fe\u4e2d\u63a2\u6d4b\u73af<\/h4>\n

2.60\u3001559-N \u53c9\u6811\u7684\u6700\u5927\u6df1\u5ea6<\/h4>\n

2.61\u3001872-\u53f6\u5b50\u76f8\u4f3c\u7684\u6811<\/h4>\n

2.62\u3001529-\u626b\u96f7\u6e38\u620f<\/h4>\n

2.63\u3001851-\u55a7\u95f9\u548c\u5bcc\u6709<\/h4>\n

2.64\u3001\u9762\u8bd5\u9898 04.12-\u6c42\u548c\u8def\u5f84<\/h4>\n

2.65\u3001473-\u706b\u67f4\u62fc\u6b63\u65b9\u5f62<\/h4>\n

2.66\u3001546-\u79fb\u9664\u76d2\u5b50<\/h4>\n

2.67\u3001323-\u65e0\u5411\u56fe\u4e2d\u8fde\u901a\u5206\u91cf\u7684\u6570\u76ee<\/h4>\n

2.68\u30011466-\u91cd\u65b0\u89c4\u5212\u8def\u7ebf<\/h4>\n

2.69\u3001542-01 \u77e9\u9635<\/h4>\n

3\u3001\u4f4e\u9891\u9898<\/h3>\n

3.1\u3001938-\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u8303\u56f4\u548c<\/h4>\n

3.2\u3001753-\u6fc0\u6d3b\u6210\u529f\u6559\u7a0b\u4fdd\u9669\u7bb1<\/h4>\n

3.3\u3001834-\u6811\u4e2d\u8ddd\u79bb\u4e4b\u548c<\/h4>\n

3.4\u30011810-Minimum Path Cost in a Hidden Grid<\/h4>\n

3.5\u3001366-\u5bfb\u627e\u4e8c\u53c9\u6811\u7684\u53f6\u5b50\u8282\u70b9<\/h4>\n

3.6\u3001749-\u9694\u79bb\u75c5\u6bd2<\/h4>\n

3.7\u3001971-\u7ffb\u8f6c\u4e8c\u53c9\u6811\u4ee5\u5339\u914d\u5148\u5e8f\u904d\u5386<\/h4>\n

3.8\u3001133-\u514b\u9686\u56fe<\/h4>\n

3.9\u3001211-\u6dfb\u52a0\u4e0e\u641c\u7d22\u5355\u8bcd - \u6570\u636e\u7ed3\u6784\u8bbe\u8ba1<\/h4>\n

3.10\u3001638-\u5927\u793c\u5305<\/h4>\n

3.11\u30011302-\u5c42\u6570\u6700\u6df1\u53f6\u5b50\u8282\u70b9\u7684\u548c<\/h4>\n

3.12\u3001576-\u51fa\u754c\u7684\u8def\u5f84\u6570<\/h4>\n

3.13\u3001733-\u56fe\u50cf\u6e32\u67d3<\/h4>\n

3.14\u3001797-\u6240\u6709\u53ef\u80fd\u7684\u8def\u5f84<\/h4>\n

3.15\u3001117-\u586b\u5145\u6bcf\u4e2a\u8282\u70b9\u7684\u4e0b\u4e00\u4e2a\u53f3\u4fa7\u8282\u70b9\u6307\u9488 II<\/h4>\n

3.16\u3001489-\u626b\u5730\u673a\u5668\u4eba<\/h4>\n

3.17\u3001513-\u627e\u6811\u5de6\u4e0b\u89d2\u7684\u503c<\/h4>\n

3.18\u30011306-\u8df3\u8dc3\u6e38\u620f III<\/h4>\n

3.19\u30011740-\u627e\u5230\u4e8c\u53c9\u6811\u4e2d\u7684\u8ddd\u79bb<\/h4>\n

3.20\u30011059-\u4ece\u59cb\u70b9\u5230\u7ec8\u70b9\u7684\u6240\u6709\u8def\u5f84<\/h4>\n

3.21\u30011766-\u4e92\u8d28\u6811<\/h4>\n

3.22\u30011391-\u68c0\u67e5\u7f51\u683c\u4e2d\u662f\u5426\u5b58\u5728\u6709\u6548\u8def\u5f84<\/h4>\n

3.23\u3001488-\u7956\u739b\u6e38\u620f<\/h4>\n

3.24\u3001490-\u8ff7\u5bab<\/h4>\n

3.25\u3001694-\u4e0d\u540c\u5c9b\u5c7f\u7684\u6570\u91cf<\/h4>\n

3.26\u3001924-\u5c3d\u91cf\u51cf\u5c11\u6076\u610f\u8f6f\u4ef6\u7684\u4f20\u64ad<\/h4>\n

3.27\u30011443-\u6536\u96c6\u6811\u4e0a\u6240\u6709\u82f9\u679c\u7684\u6700\u5c11\u65f6\u95f4<\/h4>\n

3.28\u3001261-\u4ee5\u56fe\u5224\u6811<\/h4>\n

3.29\u3001664-\u5947\u602a\u7684\u6253\u5370\u673a<\/h4>\n

3.30\u3001865-\u5177\u6709\u6240\u6709\u6700\u6df1\u8282\u70b9\u7684\u6700\u5c0f\u5b50\u6811<\/h4>\n

3.31\u30011376-\u901a\u77e5\u6240\u6709\u5458\u5de5\u6240\u9700\u7684\u65f6\u95f4<\/h4>\n

3.32\u30011457-\u4e8c\u53c9\u6811\u4e2d\u7684\u4f2a\u56de\u6587\u8def\u5f84<\/h4>\n

3.33\u3001526-\u4f18\u7f8e\u7684\u6392\u5217<\/h4>\n

3.34\u3001802-\u627e\u5230\u6700\u7ec8\u7684\u5b89\u5168\u72b6\u6001<\/h4>\n

3.35\u30011020-\u98de\u5730\u7684\u6570\u91cf<\/h4>\n

3.36\u30011448-\u7edf\u8ba1\u4e8c\u53c9\u6811\u4e2d\u597d\u8282\u70b9\u7684\u6570\u76ee<\/h4>\n

3.37\u3001886-\u53ef\u80fd\u7684\u4e8c\u5206\u6cd5<\/h4>\n

3.38\u30011038-\u628a\u4e8c\u53c9\u641c\u7d22\u6811\u8f6c\u6362\u4e3a\u7d2f\u52a0\u6811<\/h4>\n

3.39\u30011254-\u7edf\u8ba1\u5c01\u95ed\u5c9b\u5c7f\u7684\u6570\u76ee<\/h4>\n

3.40\u3001\u9762\u8bd5\u9898 08.10-\u989c\u8272\u586b\u5145<\/h4>\n","protected":false},"excerpt":{"rendered":"LeetCode-\u9898\u76ee\u8be6\u89e3\uff1a\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3001\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u4e00\u3001\u9ad8\u9891\u98981\u3001\u9ad8\u9891\u98981.1\u3001105-\u4ece\u524d\u5e8f\u4e0e\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u6784\u9020\u4e8c\u53c9\u68111.2\u3001131-\u5206\u5272...","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[],"tags":[],"_links":{"self":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts\/9001"}],"collection":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/comments?post=9001"}],"version-history":[{"count":0,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/posts\/9001\/revisions"}],"wp:attachment":[{"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/media?parent=9001"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/categories?post=9001"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mushiming.com\/wp-json\/wp\/v2\/tags?post=9001"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}