目标检测之测试时间增强(TTA)

(161) 2024-04-11 11:01:01

TTA

简单说明:
augment: 对图像进行TTA操作;
batch_augment:对一批图像进行TTA操作;
deaugment_boxes: 对预测框进行TTA操作,该操作与输入图像相反。

class BaseWheatTTA:
    """ author: @shonenkov """
    image_size = 512

    def augment(self, image):
        raise NotImplementedError
    
    def batch_augment(self, images):
        raise NotImplementedError
    
    def deaugment_boxes(self, boxes):
        raise NotImplementedError

class TTAHorizontalFlip(BaseWheatTTA):
    """ author: @shonenkov """

    def augment(self, image):
        return image.flip(1)
    
    def batch_augment(self, images):
        return images.flip(2)
    
    def deaugment_boxes(self, boxes):
        boxes[:, [1,3]] = self.image_size - boxes[:, [3,1]]
        return boxes

class TTAVerticalFlip(BaseWheatTTA):
    """ author: @shonenkov """
    
    def augment(self, image):
        return image.flip(2)
    
    def batch_augment(self, images):
        return images.flip(3)
    
    def deaugment_boxes(self, boxes):
        boxes[:, [0,2]] = self.image_size - boxes[:, [2,0]]
        return boxes
    
class TTARotate90(BaseWheatTTA):
    """ author: @shonenkov """
    
    def augment(self, image):
        return torch.rot90(image, 1, (1, 2))

    def batch_augment(self, images):
        return torch.rot90(images, 1, (2, 3))
    
    def deaugment_boxes(self, boxes):
        res_boxes = boxes.copy()
        res_boxes[:, [0,2]] = self.image_size - boxes[:, [1,3]]
        res_boxes[:, [1,3]] = boxes[:, [2,0]]
        return res_boxes

class TTACompose(BaseWheatTTA):
    """ author: @shonenkov """
    def __init__(self, transforms):
        self.transforms = transforms
        
    def augment(self, image):
        for transform in self.transforms:
            image = transform.augment(image)
        return image
    
    def batch_augment(self, images):
        for transform in self.transforms:
            images = transform.batch_augment(images)
        return images
    
    def prepare_boxes(self, boxes):
        result_boxes = boxes.copy()
        result_boxes[:,0] = np.min(boxes[:, [0,2]], axis=1)
        result_boxes[:,2] = np.max(boxes[:, [0,2]], axis=1)
        result_boxes[:,1] = np.min(boxes[:, [1,3]], axis=1)
        result_boxes[:,3] = np.max(boxes[:, [1,3]], axis=1)
        return result_boxes
    
    def deaugment_boxes(self, boxes):
        for transform in self.transforms[::-1]:
            boxes = transform.deaugment_boxes(boxes)
        return self.prepare_boxes(boxes)

TTA的用法

# you can try own combinations:
transform = TTACompose([
    TTARotate90(),
    TTAVerticalFlip(),
])

fig, ax = plt.subplots(1, 3, figsize=(16, 6))

image, image_id = dataset[5]

numpy_image = image.permute(1,2,0).cpu().numpy().copy()

ax[0].imshow(numpy_image);
ax[0].set_title('original')

tta_image = transform.augment(image)
tta_image_numpy = tta_image.permute(1,2,0).cpu().numpy().copy()

det = net(tta_image.unsqueeze(0).float().cuda(), torch.tensor([1]).float().cuda())
boxes, scores = process_det(0, det)

for box in boxes:
    cv2.rectangle(tta_image_numpy, (box[0], box[1]), (box[2],  box[3]), (0, 1, 0), 2)

ax[1].imshow(tta_image_numpy);
ax[1].set_title('tta')
    
boxes = transform.deaugment_boxes(boxes)

for box in boxes:
    cv2.rectangle(numpy_image, (box[0], box[1]), (box[2],  box[3]), (0, 1, 0), 2)
    
ax[2].imshow(numpy_image);
ax[2].set_title('deaugment predictions');

目标检测之测试时间增强(TTA) (https://mushiming.com/)  第1张

参考

THE END

发表回复