B:Loss function: D i c e L o s s = 1 − 2 ∑ i N p i g i ∑ i N p i 2 + ∑ i N g 2 DiceLoss=1- \frac{2\sum_{i}^{N}p_ig_i}{\sum_{i}^{N}p_i^2+\sum_{i}^{N}g^2} DiceLoss=1−∑iNpi2+∑iNg22∑iNpigi
S o f t C r o s s E n t r o p y L o s s = − 1 n ∑ i = 1 n ∑ j = 1 c y ^ i j l o g ( y i j d ) SoftCrossEntropyLoss=-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{c}{\hat{y}_{ij} }log({y_{ij}^d}) SoftCrossEntropyLoss=−n1i=1∑nj=1∑cy^ijlog(yijd)
C:Evaluation Metrics
Accuracy (Acc):准确性 m A c c = 1 k + 1 ∑ i = 0 k p i i ∑ j = 0 k p i j \mathrm{mAcc}=\frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{i i}}{\sum_{j=0}^{k} p_{i j}} mAcc=k+11i=0∑k∑j=0kpijpii
Intersection-over-Union (IoU):交并比 m I o U = 1 k + 1 ∑ i = 0 k p i i ∑ j = 0 k p i j + ∑ j = 0 k p j i − p i i \mathrm{mIoU}=\frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{i i}}{\sum_{j=0}^{k} p_{i j}+\sum_{j=0}^{k} p_{j i}-p_{i i}} mIoU=k+11i=0∑k∑j=0kpij+∑j=0kpji−piipii
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in 2018 European conference on computer vision (ECCV), 2018, pp. 3–19(启发了FEAM:使用注意力组件从融合数据总学习特征)
References
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in 2018 European conference on computer vision (ECCV), 2018, pp. 3–19