「推箱子」是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。
游戏地图用大小为 n * m
的网格 grid
表示,其中每个元素可以是墙、地板或者是箱子。
现在你将作为玩家参与游戏,按规则将箱子 'B'
移动到目标位置 'T'
:
'S'
表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。'.'
表示,意味着可以自由行走。'#'
表示,意味着障碍物,不能通行。'B'
表示。相应地,网格上有一个目标位置 'T'
。返回将箱子推到目标位置的最小 推动 次数,如果无法做到,请返回 -1
。
示例 1:
输入:grid = [["#","#","#","#","#","#"],
["#","T","#","#","#","#"],
["#",".",".","B",".","#"],
["#",".","#","#",".","#"],
["#",".",".",".","S","#"],
["#","#","#","#","#","#"]]
输出:3
解释:我们只需要返回推箱子的次数。
示例 2:
输入:grid = [["#","#","#","#","#","#"],
["#","T","#","#","#","#"],
["#",".",".","B",".","#"],
["#","#","#","#",".","#"],
["#",".",".",".","S","#"],
["#","#","#","#","#","#"]]
输出:-1
示例 3:
输入:grid = [["#","#","#","#","#","#"],
["#","T",".",".","#","#"],
["#",".","#","B",".","#"],
["#",".",".",".",".","#"],
["#",".",".",".","S","#"],
["#","#","#","#","#","#"]]
输出:5
解释:向下、向左、向左、向上再向上。
示例 4:
输入:grid = [["#","#","#","#","#","#","#"],
["#","S","#",".","B","T","#"],
["#","#","#","#","#","#","#"]]
输出:-1
提示:
1 <= grid.length <= 20
1 <= grid[i].length <= 20
grid
仅包含字符 '.'
, '#'
, 'S'
, 'T'
, 以及 'B'
。grid
中 'S'
, 'B'
和 'T'
各只能出现一个。解题思路
这个问题思路非常简单,代码比较复杂。我们需要判断箱子的最小推动次数,显然通过bfs
来处理。
在推箱子的过程中,包括人的移动和箱子的移动两个部分,所以需要判断箱子是否可达(由于是最短路问题,所以这里通过bfs
),并且判断人是不是可以到达箱子的后面去推它(通过bfs
或dfs
处理,这里使用bfs
)。在判断箱子是否可达的时候,bfs
的队列中应该存储的箱子坐标和人的坐标两个状态,因为必须同时满足两个条件(人可达和箱子可达),那么箱子才算可达的。
class Solution:
def minPushBox(self, grid: List[List[str]]) -> int:
r, c = len(grid), len(grid[0])
dire = [[0, 1], [0, -1], [-1, 0], [1, 0]]
for i in range(r):
for j in range(c):
if grid[i][j] == 'T':
T = (i, j)
elif grid[i][j] == 'B':
B = (i, j)
elif grid[i][j] == 'S':
S = (i, j)
def check1(x, y):
return x >= 0 and x < r and y >= 0 and y < c and grid[x][y] != '#'
def canMoveTo(e, b, q, vis):
while q:
pre = q.pop(0)
if pre == e:
return True
for i, j in dire:
nx, ny = pre[0] + i, pre[1] + j
if check1(nx, ny) and \
(nx, ny) != b and (nx, ny) not in vis:
q.append((nx, ny))
vis.add((nx, ny))
return False
def move(e, q, vis):
res = 0
while q:
for _ in range(len(q)):
b, p = q.pop(0)
if b == e:
return res
for i, j in dire:
nx, ny = b[0] + i, b[1] + j
if check1(nx, ny) and \
check1(b[0] - i, b[1] - j) and\
((nx, ny), b) not in vis and \
canMoveTo((b[0] - i, b[1] - j), b, [p], set([p])):
q.append(((nx, ny), b))
vis.add(((nx, ny), b))
res += 1
return -1
return move(T, [(B, S)], set([(B, S)]))
上面代码的思路非常清晰。但是我们实现上可以将状态简化,我们可以通过箱子的坐标和箱子移动方向作为状态,这样我们原先需要160000
种状态,而现在只需要1600
种状态。这么做可以改善空间复杂度,但是无法改进时间复杂度,代码上也没有上面简洁,所以我这里就不写出来了。
我将该问题的其他语言版本添加到了我的GitHub Leetcode
如有问题,希望大家指出!!!