(Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)
Example
Example 1:
Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)
Example 2:
Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)
Notice
1.L, R will be integers L <= R in the range [1, 10^6].
2.R - L will be at most 10000.
求Prime数的练习题。
class Solution {
public:
/**
* @param L: an integer
* @param R: an integer
* @return: the count of numbers in the range [L, R] having a prime number of set bits in their binary representation
*/
int countPrimeSetBits(int L, int R) {
int result = 0;
for (int i = L; i <= R; ++i) {
if (isPrime(numOfSetBits(i))) {
result++;
}
}
return result;
}
private:
inline int numOfSetBits(int n) {
int count = 0;
while (n > 0) {
if (n & 1) {
count++;
}
n >>= 1;
}
return count;
}
inline int isPrime(int n) {
if (n <= 1) return false;
if (n == 2) return true;
if ((n & 0x1) == 0) return false;
int sqrtN = sqrt(n);
for (int i = 2; i <= sqrtN; ++i) {
if ((n % i) == 0) return false;
}
return true;
}
};